• Title/Summary/Keyword: Neural Networks Theory

Search Result 166, Processing Time 0.024 seconds

Soft Set Theory Oriented Forecast Combination Method for Business Failure Prediction

  • Xu, Wei;Xiao, Zhi
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.109-128
    • /
    • 2016
  • This paper presents a new combined forecasting method that is guided by the soft set theory (CFBSS) to predict business failures with different sample sizes. The proposed method combines both qualitative analysis and quantitative analysis to improve forecasting performance. We considered an expert system (ES), logistic regression (LR), and support vector machine (SVM) as forecasting components whose weights are determined by the receiver operating characteristic (ROC) curve. The proposed procedure was applied to real data sets from Chinese listed firms. For performance comparison, single ES, LR, and SVM methods, the combined forecasting method based on equal weights (CFBEWs), the combined forecasting method based on neural networks (CFBNNs), and the combined forecasting method based on rough sets and the D-S theory (CFBRSDS) were also included in the empirical experiment. CFBSS obtains the highest forecasting accuracy and the second-best forecasting stability. The empirical results demonstrate the superior forecasting performance of our method in terms of accuracy and stability.

A Comparative Study of Image Recognition by Neural Network Classifier and Linear Tree Classifier (신경망 분류기와 선형트리 분류기에 의한 영상인식의 비교연구)

  • Young Tae Park
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.141-148
    • /
    • 1994
  • Both the neural network classifier utilizing multi-layer perceptron and the linear tree classifier composed of hierarchically structured linear discriminating functions can form arbitrarily complex decision boundaries in the feature space and have very similar decision making processes. In this paper, a new method for automatically choosing the number of neurons in the hidden layers and for initalzing the connection weights between the layres and its supporting theory are presented by mapping the sequential structure of the linear tree classifier to the parallel structure of the neural networks having one or two hidden layers. Experimental results on the real data obtained from the military ship images show that this method is effective, and that three exists no siginificant difference in the classification acuracy of both classifiers.

  • PDF

Acoustic Sensors based Fault Diagnosis Algorithm for Large-scaled Power Machines using Neural Independent Component Analysis (신경회로망 독립성분해석을 이용한 음향센서 기반 대전력기기의 고장진단 알고리즘)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.881-888
    • /
    • 2008
  • We present a novel fault diagnosis methodology using acoustic sensor systems and neural independent component analysis for large-scaled power machines. Acoustic sensors are carried out to measure sounds generated from power machines whose signal is used to determine whether fault is occurred or not. Acoustic measurements are independently mixed and deteriorated from original source signals. We propose a demixing algorithm against such mixed signals by means of independent component analysis which is achieved based on information theory and higher-order statistics to derive learning mechanism.

Design of an Intelligent Robot Control System Using Neural Network (신경회로망을 이용한 지능형 로봇 제어 시스템 설계)

  • 정동연;서운학;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.279-279
    • /
    • 2000
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts fur the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell fur automatic test and assembling in S company.

  • PDF

FLNN-Based Friction Compensation Controller for XY Tables (FLNN에 기초한 XY Table용 마찰 보상 제어기)

  • Chung, Chae-Wook;Kim, Young-Ho;Kuc, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.113-119
    • /
    • 2002
  • An FLNN-based neural network controller is applied to precise positioning of XY table with friction as the extension study of [11]. The neural network identifies the frictional farces of the table. Its weight adaptation rule, named the reinforcement adaptive learning rule, is derived from the Lyapunov stability theory. The experimental results with 2-DOF XY table verify the effectiveness of the proposed control scheme. It is also expected that the proposed control approach is applicable to a wide class of mechanical systems.

Multiple faults diagnosis of a linear system using ART2 neural networks (ART2 신경회로망을 이용한 선형 시스템의 다중고장진단)

  • Lee, In-Soo;Shin, Pil-Jae;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.244-251
    • /
    • 1997
  • In this paper, we propose a fault diagnosis algorithm to detect and isolate multiple faults in a system. The proposed fault diagnosis algorithm is based on a multiple fault classifier which consists of two ART2 NN(adaptive resonance theory2 neural network) modules and the algorithm is composed of three main parts - parameter estimation, fault detection and isolation. When a change in the system occurs, estimated parameters go through a transition zone in which residuals between the system output and the estimated output cross the threshold, and in this zone, estimated parameters are transferred to the multiple faults classifier for fault isolation. From the computer simulation results, it is verified that when the proposed diagnosis algorithm is performed successfully, it detects and isolates faults in the position control system of a DC motor.

  • PDF

A Study on the Learning Method for Induction Motor Trajectory using a Neuro-Fuzzy Networks (뉴로-퍼지 네트워크에 의한 유도전동기 궤적의 학습에 관한 연구)

  • Yang, Seung-Ho;Kim, Sei-Chan;Kim, Duk-Hun;Yoo, Dong-Wook;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.331-333
    • /
    • 1994
  • A learning method for induction motor trajectory using neuro-fuzzy networks (NFN) based on fusion of fuzzy logic theory and neural networks is proposed. The premise and consequent parameters of the NFN affecting the controllers performances are modified during the learning stages by the proposed learning method to implement an optimal controller only with pre-determined target trajectory and the least amount of knowledge about an induction motor. The induction motor position control system is simulated to verify the effectiveness of the learned NF controller(NFC). The simulation results shows that the proposed learning method has good dynamic performance and small steady state error.

  • PDF

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

Feature Vector Extraction and Automatic Classification for Transient SONAR Signals using Wavelet Theory and Neural Networks (Wavelet 이론과 신경회로망을 이용한 천이 수중 신호의 특징벡타 추출 및 자동 식별)

  • Yang, Seung-Chul;Nam, Sang-Won;Jung, Yong-Min;Cho, Yong-Soo;Oh, Won-Tcheon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.71-81
    • /
    • 1995
  • In this paper, feature vector extraction methods and classification algorithms for the automatic classification of transient signals in underwater are discussed. A feature vector extraction method using wavelet transform, which shows good performance with small number of coefficients, is proposed and compared with the existing classical methods. For the automatic classification, artificial neural networks such as multilayer perceptron (MLP), radial basis function (RBF), and MLP-Class are utilized, where those neural networks as well as extracted feature vectors are combined to improve the performance and reliability of the proposed algorithm. It is confirmed by computer simulation with Traco's standard transient data set I and simulated data that the proposed feature vector extraction method and classification algorithm perform well, assuming that the energy of a given transient signal is sufficiently larger than that of a ambient noise, that there are the finite number of noise sources, and that there does not exist noise sources more than two simultaneously.

  • PDF

Design of Fuzzy Pattern Classifier based on Extreme Learning Machine (Extreme Learning Machine 기반 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Sok-Beom;Hwang, Kuk-Yeon;Wang, Jihong;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.509-514
    • /
    • 2015
  • In this paper, we introduce a new pattern classifier which is based on the learning algorithm of Extreme Learning Machine the sort of artificial neural networks and fuzzy set theory which is well known as being robust to noise. The learning algorithm used in Extreme Learning Machine is faster than the conventional artificial neural networks. The key advantage of Extreme Learning Machine is the generalization ability for regression problem and classification problem. In order to evaluate the classification ability of the proposed pattern classifier, we make experiments with several machine learning data sets.