• Title/Summary/Keyword: Neural Network gain

Search Result 166, Processing Time 0.028 seconds

STPI Controller of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 STPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.24-31
    • /
    • 2007
  • This paper presents self tuning PI(STPI) controller of IPMSM drive using neural network. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, STPI controller proposes a new method based neural network. STPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Development of Genetic Algorithm for Robust Control of Mobile Robot (모바일 로봇의 견실제어를 위한 제네틱 알고리즘 개발)

  • 김홍래;배길호;정경규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.241-246
    • /
    • 2004
  • This paper proposed trajectory tracking control of mobile robot. Trajectory tracking control scheme are real coding genetic-algorithm and back-propergation algorithm. Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studios have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using Real coding Genetic Algorithm(RCGA) and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verify numerical simulations and the results show better performance than constant gain controller.

  • PDF

An Intelligent Control of Mobile Robot Using Genetic Algorithm (유전자 알고리즘을 이용한 이동로봇의 지능제어)

  • 한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.126-132
    • /
    • 2004
  • This paper proposed trajectory tracking control based on genetic algorithm. Trajectory tracking control scheme are real coding genetic algorithm(RCGA) and back-propagation algorithm(BPA). Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studies have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using real coding genetic algorithm and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verity numerical simulations and the results show better performance than constant gain controller.

Design of Neuro-Fuzzy Controller using Relative Gain Matrix (상대이득행렬을 이용한 뉴로 퍼지 제어기의 설계)

  • 서삼준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.157-157
    • /
    • 2000
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. The concept of relative gain matrix is used to obtain the input-output pairs. However, among the input/output variables which are not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by tile introduction of a simple compensator. This compensator adjusts the degree of coupling between variables using a neural network. In this proposed neuro-fuzzy controller, the Neural network which is realized by back-propagation algorithm, adjusts the mutual coupling weight between variables.

  • PDF

Improved BP-NN Controller of PMSM for Speed Regulation

  • Feng, Li-Jia;Joung, Gyu-Bum
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.175-186
    • /
    • 2021
  • We have studied the speed regulation of the permanent magnet synchronous motor (PMSM) servo system in this paper. To optimize the PMSM servo system's speed-control performance with disturbances, a non-linear speed-control technique using a back-propagation neural network (BP-NN) algorithm forthe controller design of the PMSM speed loop is introduced. To solve the slow convergence speed and easy to fall into the local minimum problem of BP-NN, we develope an improved BP-NN control algorithm by limiting the range of neural network outputs of the proportional coefficient Kp, integral coefficient Ki of the controller, and add adaptive gain factor β, that is the internal gain correction ratio. Compared with the conventional PI control method, our improved BP-NN control algorithm makes the settling time faster without static error, overshoot or oscillation. Simulation comparisons have been made for our improved BP-NN control method and the conventional PI control method to verify the proposed method's effectiveness.

A Design of Neural Network Control Architecture for Robot Motion (로보트 운동을 위한 신경회로망 제어구조의 설계)

  • 이윤섭;구영모;조시형;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.400-410
    • /
    • 1992
  • This paper deals with a design of neural network control architectures for robot motion. Three types of control architectures are designed as follows : 1) a neural network control architecture which has the same characteristics as computed torque method 2) a neural network control architecture for compensating the control error on computed torque method with fixed feedback gain 3) neural network adaptive control architecture. Computer simulation of PUMA manipulator with 6 links is conducted for robot motion in order to examine the proposed neural network control architectures.

  • PDF

Channel Allocation Using Gradual Neural Network For Multi-User OFDM Systems (다중 사용자 OFDM시스템에서 Gradual Neural Network를 이용한 채널 할당)

  • Moon, Eun-Jin;Lee, Chang-Wook;Jeon, Gi-J.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.240-242
    • /
    • 2004
  • A channel allocation algorithm of multi-user OFDM(orthogonal frequency division multiplexing) system is presented. The proposed algorithm is to reduce the complexity of the system, using the GNN(gradual neural network) with gradual expansion scheme and the algorithm attempts to allocate channel with good channel gain to each user. The method has lower computational complexity and less iteration than other algorithms.

  • PDF

A Study on Self-tunning of PID Controller using Neural Network Theory (신경망이론을 이용한 PID제어기의 자기동조에 관한 연구)

  • Jun, Kee-Young;Hahm, Nyoun-Kun;Sung, Nark-Kuy;Lee, Seung-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2610-2612
    • /
    • 1999
  • In controlling vector of induction motor, PID controller is required much time as the expert should control manually a gain of controller according to plant or a change of circumstances. Accordingly, this paper has gotten a gain of PID controller used neural network by self-funning method in order to settle above problem. The neural network can describe an input/output features in spite of non-linear system which is hard to get mathematical model by controlling the strength of connection by learning. It has a strong character against a distortion and noise of input information, and is suitable modeling of diver-variable system which is composed of several input/output. This paper has represented the self-tunning method for gain of PID controller used neural network when using PID controller to control speed of induction motor, and has checked strong characters against distortion and noise of input information through simulation.

  • PDF

Numerical Research on Suppression of Thermally Induced Wavefront Distortion of Solid-state Laser Based on Neural Network

  • Liu, Hang;He, Ping;Wang, Juntao;Wang, Dan;Shang, Jianli
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.479-488
    • /
    • 2022
  • To account for the internal thermal effects of solid-state lasers, a method using a back propagation (BP) neural network integrated with a particle swarm optimization (PSO) algorithm is developed, which is a new wavefront distortion correction technique. In particular, by using a slab laser model, a series of fiber pumped sources are employed to form a controlled array to pump the gain medium, allowing the internal temperature field of the gain medium to be designed by altering the power of each pump source. Furthermore, the BP artificial neural network is employed to construct a nonlinear mapping relationship between the power matrix of the pump array and the thermally induced wavefront aberration. Lastly, the suppression of thermally induced wavefront distortion can be achieved by changing the power matrix of the pump array and obtaining the optimal pump light intensity distribution combined using the PSO algorithm. The minimal beam quality β can be obtained by optimally distributing the pumping light. Compared with the method of designing uniform pumping light into the gain medium, the theoretically computed single pass beam quality β value is optimized from 5.34 to 1.28. In this numerical analysis, experiments are conducted to validate the relationship between the thermally generated wavefront and certain pumping light distributions.

Speed Control of IPMSM Drive using NNPI Controller (NNPI 제어기를 이용한 IPMSM 드라이브의 속도 제어)

  • Jung, Dong-Wha;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.65-73
    • /
    • 2006
  • This paper presents speed control of IPMSM drive using neural network(NN) PI controller. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, NNPI controller proposes a new method based neural network. NNPI controller is developed to minimize overshoot rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.