• 제목/요약/키워드: Neural Network for Control

검색결과 2,131건 처리시간 0.033초

PD 기반의 퍼지제어기로 제어된 로봇의 새로운 신경회로망 보상 제어 기술 (A Novel Neural Network Compensation Technique for PD-Like Fuzzy Controlled Robot Manipulators)

  • 송덕희;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.524-529
    • /
    • 2005
  • In this paper, a novel neural network compensation technique for PD like fuzzy controlled robot manipulators is presented. A standard PD-like fuzzy controller is designed and used as a main controller for controlling robot manipulators. A neural network controller is added to the reference trajectories to modify input error space so that the system is robust to any change in system parameter variations. It forms a neural-fuzzy control structure and used to compensate for nonlinear effects. The ultimate goal is same as that of the neuro-fuzzy control structure, but this proposed technique modifies the input error not the fuzzy rules. The proposed scheme is tested to control the position of the 3 degrees-of-freedom rotary robot manipulator. Performances are compared with that of other neural network control structure known as the feedback error learning structure that compensates at the control input level.

신경 회로망의 RLED 로봇 머너퓰레이터 추적 제어 (Neural Network Tracking Control of Rigid-tink Electrically-Driven Robot Manipulators)

  • 정재욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.74-74
    • /
    • 2000
  • This paper presents a neural network controller for a rigid-link electrically-driven robot. The proposed controller is designed in conjunction with three neural networks approximating for complicated nonlinear functions. Particularly, the fact, different from conventional schemes, is that the neural network based current observer is used. Therefore, no accurate measurement of the actuator driving current is required. In the proposed controller-observer scheme, the derived weight update rule guarantees the stability of closed-loop system in the sense of Lyapunov. The effectiveness and performance of the proposed method are demonstrated through computer simulation.

  • PDF

Control of Nonlinear System with a Disturbance Using Multilayer Neural Networks

  • Seong, Hong-Seok
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.189-195
    • /
    • 2000
  • The mathematical solutions of the stability convergence are important problems in system control. In this paper such problems are analyzed and resolved for system control using multilayer neural networks. We describe an algorithm to control an unknown nonlinear system with a disturbance, using a multilayer neural network. We include a disturbance among the modeling error, and the weight update rules of multilayer neural network are derived to satisfy Lyapunov stability. The overall control system is based upon the feedback linearization method. The weights of the neural network used to approximate a nonlinear function are updated by rules derived in this paper . The proposed control algorithm is verified through computer simulation. That is as the weights of neural network are updated at every sampling time, we show that the output error become finite within a relatively short time.

  • PDF

미정보 환경 하에서 신경회로망 힘추종 로봇 제어 기술의 실험적 연구 (Experimental Studies on Neural Network Force Tracking Control Technique for Robot under Unknown Environment)

  • 정슬;임선빈
    • 제어로봇시스템학회논문지
    • /
    • 제8권4호
    • /
    • pp.338-344
    • /
    • 2002
  • In this paper, neural network force tracking control is proposed. The conventional impedance function is reformulated to have direct farce tracking capability. Neural network is used to compensate for all the uncertainties such as unknown robot dynamics, unknown environment stiffness, and unknown environment position. On line training signal of farce error for neural network is formulated. A large x-y table is built as a test-bed and neural network loaming algorithm is implemented on a DSP board mounted in a PC. Experimental studies of farce tracking on unknown environment for x-y table robot are presented to confirm the performance of the proposed technique.

신경망을 이용한 이동 로봇의 실시간 고속 정밀제어 (High Speed Precision Control of Mobile Robot using Neural Network in Real Time)

  • 주진화;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.95-104
    • /
    • 1999
  • In this paper we propose a fast and precise control algorithm for a mobile robot, which aims at the self-tuning control applying two multi-layered neural networks to the structure of computed torque method. Through this algorithm, the nonlinear terms of external disturbance caused by variable task environments and dynamic model errors are estimated and compensated in real time by a long term neural network which has long learning period to extract the non-linearity globally. A short term neural network which has short teaming period is also used for determining optimal gains of PID compensator in order to come over the high frequency disturbance which is not known a priori, as well as to maintain the stability. To justify the global effectiveness of this algorithm where each of the long term and short term neural networks has its own functions, simulations are peformed. This algorithm can also be utilized to come over the serious shortcoming of neural networks, i.e., inefficiency in real time.

  • PDF

신경회로망을 이용한 유압 스텐슬링 로봇의 정확한 위치 제어 (Precise position control of hydraulic driven stenciling robot using neural network)

  • 정슬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.779-782
    • /
    • 1997
  • In this paper, accurate position control of a stenciling robot manipulator is designed. The stenciling robot is requried to draw lines and characters on the pavement. Since the robot is huge and heavy, the inertia is expected to play a major role in the tracking performance as desired. Here we are proposing neural network control scheme for a computed-torque like controller for the stenciling robot. On-line compensation is achieved by neural network. Simulation studies with stenciling robot are carried out to test the performance of the proposed control scheme.

  • PDF

Optimal Learning of Neo-Fuzzy Structure Using Bacteria Foraging Optimization

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1716-1722
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes bacteria foraging algorithm based optimal learning fuzzy-neural network (BA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by bacteria foraging algorithm. The learning algorithm of the BA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, bacteria foraging algorithm is used for tuning of membership functions of the proposed model.

  • PDF

웨이블릿 신경 회로망을 이용한 이동 로봇의 경로 추종 제어 (Path Tracking Control Using a Wavelet Neural Network for Mobile Robots)

  • 오준섭;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2414-2416
    • /
    • 2003
  • In this raper, we present a Wavelet Neural Network(WNN) approach to the solution of the tracking problem for mobile robots that possess complexity, nonlinearity and uncertainty. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome the problems caused by local minima of optimization and various uncertainties. This network structure is helpful to determine the number of the hidden nodes and the initial value of weights with compact structure. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and the pose of a mobile robot that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by the gradient-descent method. Through computer simulations, we demonstrate the effectiveness and feasibility of the proposed control method.

  • PDF

볼과 빔 제어를 위한 퍼지 뉴론을 갖는 신경망 제어기 설계 (The neural network controller design with fuzzy-neuraon and its application to a ball and beam)

  • 신권석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.897-900
    • /
    • 1998
  • Through fuzzy logic controller is very useful to many areas, it is difficult to build up the rule-base by experience and trial-error. So, effective self-tuning fuzzy controller for the position control of ball and beam is designed. In this paper, we developed the neural network control system with fuzzy-neuron which conducts the adjustment process for the parameters to satisfy have nonlinear property of the ball and beam system. The proposed algorithm is based on a fuzzy logic control system using a neural network learinign algorithm which is a back-propagation algorithm. This system learn membership functions with input variables. The purpose of the design is to control the position of the ball along the track by manipulating the angualr position of the serve. As a result, it is concluded that the neural network control system with fuzzy-neuron is more effective than the conventional fuzzy system.

  • PDF

Neural Network Active Control of Structures with Earthquake Excitation

  • Cho Hyun Cheol;Fadali M. Sami;Saiidi M. Saiid;Lee Kwon Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.202-210
    • /
    • 2005
  • This paper presents a new neural network control for nonlinear bridge systems with earthquake excitation. We design multi-layer neural network controllers with a single hidden layer. The selection of an optimal number of neurons in the hidden layer is an important design step for control performance. To select an optimal number of hidden neurons, we progressively add one hidden neuron and observe the change in a performance measure given by the weighted sum of the system error and the control force. The number of hidden neurons which minimizes the performance measure is selected for implementation. A neural network was trained for mitigating vibrations of bridge systems caused by El Centro earthquake. We applied the proposed control approach to a single-degree-of-freedom (SDOF) and a two-degree-of-freedom (TDOF) bridge system. We assessed the robustness of the control system using randomly generated earthquake excitations which were not used in training the neural network. Our results show that the neural network controller drastically mitigates the effect of the disturbance.