• 제목/요약/키워드: Neural Network Prediction System

검색결과 614건 처리시간 0.026초

신경망이론을 이용한 강우예측모형의 개발 (Development of Rainfall Forecastion Model Using a Neural Network)

  • 오남선
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.253-256
    • /
    • 1996
  • Rainfall is one of the major and complicated elements of hydrologic system. Accurate prediction of rainfall is very important to mitigate storm damage. The neural network is a good model to be applied for the classification problem, large combinatorial optimization and nonlinear mapping. In this dissertation, rainfall predictions by the neural network theory were presented. A multi-layer neural network was constructed. The network learned continuous-valued input and output data. The network was used to predict rainfall. The online, multivariate, short term rainfall prediction is possible by means of the developed model. A multidimensional rainfall generation model is applied to Seoul metropolitan area in order to generate the 10-minute rainfall. Application of neural network to the generated rainfall shows good prediction. Also application of neural network to 1-hour real data in Seoul metropolitan area shows slightly good predictions.

  • PDF

상태피드백 실시간 회귀 신경회망을 이용한 EEG 신호 예측 (EEG Signal Prediction by using State Feedback Real-Time Recurrent Neural Network)

  • 김택수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권1호
    • /
    • pp.39-42
    • /
    • 2002
  • For the purpose of modeling EEG signal which has nonstationary and nonlinear dynamic characteristics, this paper propose a state feedback real time recurrent neural network model. The state feedback real time recurrent neural network is structured to have memory structure in the state of hidden layers so that it has arbitrary dynamics and ability to deal with time-varying input through its own temporal operation. For the model test, Mackey-Glass time series is used as a nonlinear dynamic system and the model is applied to the prediction of three types of EEG, alpha wave, beta wave and epileptic EEG. Experimental results show that the performance of the proposed model is better than that of other neural network models which are compared in this paper in some view points of the converging speed in learning stage and normalized mean square error for the test data set.

인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측 (Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network)

  • 유충식;최병석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

신경회로망을 이용한 용접잔류응력 예측에 관한 연구 (A Study on the Predict of Residual Stress Using a Neural Network)

  • 김일수;이연신;박창언;정영재;안영호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.251-255
    • /
    • 2000
  • Recently, the improvement of computer capacities and artificial intelligence ware caused to employ for prediction of residual stresses and strength evaluation. There are a lot of researches regarding the measurement and prediction of residual stresses for weldment using a neural network in the advanced countries, but in our country, a neural network as a technical part, has only been used on the possibilities of employment for welding area. Furthermore, the relationship between residual stress and process parameters using a neural network was wholly lacking. Therefore development of a new technical method for the optimized process parameters on the reduction of residual stress and applyment of real-time production line should be developed. The objectives of this paper is to measure the residual stress of butt welded specimen using strain gage sectioning method and to apply them to a neural network for prediction of residual stresses on a given process parameter. Also, the assessment of the developed system using a neural network was carried out

  • PDF

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.154-161
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

  • PDF

퍼지 클러스터링을 이용한 고농도오존예측 (Forecasting High-Level Ozone Concentration with Fuzzy Clustering)

  • 김재용;김성신;왕보현
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.191-194
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Also, the results of prediction are not a good performance so far, especially in the high-level ozone concentration. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system.

  • PDF

인공신경망을 활용한 고등어의 위판가격 변동 예측 -어획량 제한이 없었던 TAC제도 시행 이전의 경우- (Forecasting common mackerel auction price by artificial neural network in Busan Cooperative Fish Market before introducing TAC system in Korea)

  • 황강석;최정화;오택윤
    • 수산해양기술연구
    • /
    • 제48권1호
    • /
    • pp.72-81
    • /
    • 2012
  • Using artificial neural network (ANN) technique, auction prices for common mackerel were forecasted with the daily total sale and auction price data at the Busan Cooperative Fish Market before introducing Total Allowable Catch (TAC) system, when catch data had no limit in Korea. Virtual input data produced from actual data were used to improve the accuracy of prediction and the suitable neural network was induced for the prediction. We tested 35 networks to be retained 10, and found good performance network with regression ratio of 0.904 and determination coefficient of 0.695. There were significant variations between training and verification errors in this network. Ideally, it should require more training cases to avoid over-learning, which leads to improve performance and makes the results more reliable. And the precision of prediction was improved when environmental factors including physical and biological variables were added. This network for prediction of price and catch was considered to be applicable for other fishes.

Configuration design of the trainset of a high-speed train using neural networks

  • Lee, Jangyong;Soonhung Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.116-121
    • /
    • 2001
  • Prediction of the top(service) speeds of high-speed trains and configuration design to trainset of them has been studied using the neural network system The traction system. The traction system of high-speed trains is composed of transformers, motor blocks, and traction motors of which locations and number in the trainset formation should be determine in the early stage of train conceptural design. Components of the traction system are the heaviest parts in a train so that it gives strong influence to the top speeds of high-speed trains. Prediction of the top speeds has been performed mainly with data associated with the traction system based on the frequently used neural network system-backpropagation. The neural network has been trained with the data of the high-speed trains such as TGV, ICE, and Shinkanse. Configuration design of the trainset determines the number of trains motor cars, traction motors, weights and power of trains. Configuration results from the neural network are more accurate if neural networks is trained with data of the same type of trains will be designed.

  • PDF