• Title/Summary/Keyword: Neural Network Modeling

Search Result 740, Processing Time 0.027 seconds

Face Detection in Color Images Based on Skin Region Segmentation and Neural Network (피부 영역 분할과 신경 회로망에 기반한 칼라 영상에서 얼굴 검출)

  • Lee, Young-Sook;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.1-11
    • /
    • 2006
  • Many research demonstrations and commercial applications have been tried to develop face detection and recognition systems. Human face detection plays an important role in applications such as access control and video surveillance, human computer interface, identity authentication, etc. There are some special problems such as a face connected with background, faces connected via the skin color, and a face divided into several small parts after skin region segmentation in generally. It can be allowed many face detection techniques to solve the first and second problems. However, it is not easy to detect a face divided into several parts of regions for reason of different illumination conditions in the third problem. Therefore, we propose an efficient modified skin segmentation algorithm to solve this problem because the typical region segmentation algorithm can not be used to. Our algorithm detects skin regions over the entire image, and then generates face candidate regions using our skin segmentation algorithm For each face candidate, we implement the procedure of region merging for divided regions in order to make a region using adjacency between homogeneous regions. We utilize various different searching window sizes to detect different size faces and a face detection classifier based on a back-propagation algorithm in order to verify whether the searching window contains a face or not.

  • PDF

Smoothing Effect in X-ray Microtomogram and Its Influence on the Physical Property Estimation of Rocks (X선 토모그램의 Smoothing 효과가 암석의 물성 예측에 미치는 영향 분석)

  • Lee, Min-Hui;Keehm, Young-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Physical properties of rocks are strongly dependant on details of pore micro-structures, which can be used for quantifying relations between physical properties of rocks through pore-scale simulation techniques. Recently, high-resolution scan techniques, such as X-ray microtomography and high performance computers make it possible to calculate permeability from pore micro-structures of rocks. We try to extend this simulation methodology to velocity and electrical conductivity. However, the smoothing effect during tomographic inversion creates artifacts in pore micro-structures and causes inaccurate property estimation. To mitigate this artifact, we tried to use sharpening filter and neural network classification techniques. Both methods gave noticeable improvement in pore structure imaging and accurate estimation of permeability and electrical conductivity, which implies that our method effectively removes the smoothing effect in pore structures. However, the calculated velocities showed only incremental improvement. By comparison between thin section images and tomogram, we found that our resolution is not high enough, and it is mainly responsible for the inaccuracy in velocity despite the successful removal of the smoothing effect. In conclusion, our methods can be very useful for pore-scale modeling, since it can create accurate pore structure without the smoothing effect. For accurate velocity estimation, the resolution of pore structure should be at least three times higher than that for permeability simulation.

Semi-supervised domain adaptation using unlabeled data for end-to-end speech recognition (라벨이 없는 데이터를 사용한 종단간 음성인식기의 준교사 방식 도메인 적응)

  • Jeong, Hyeonjae;Goo, Jahyun;Kim, Hoirin
    • Phonetics and Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.29-37
    • /
    • 2020
  • Recently, the neural network-based deep learning algorithm has dramatically improved performance compared to the classical Gaussian mixture model based hidden Markov model (GMM-HMM) automatic speech recognition (ASR) system. In addition, researches on end-to-end (E2E) speech recognition systems integrating language modeling and decoding processes have been actively conducted to better utilize the advantages of deep learning techniques. In general, E2E ASR systems consist of multiple layers of encoder-decoder structure with attention. Therefore, E2E ASR systems require data with a large amount of speech-text paired data in order to achieve good performance. Obtaining speech-text paired data requires a lot of human labor and time, and is a high barrier to building E2E ASR system. Therefore, there are previous studies that improve the performance of E2E ASR system using relatively small amount of speech-text paired data, but most studies have been conducted by using only speech-only data or text-only data. In this study, we proposed a semi-supervised training method that enables E2E ASR system to perform well in corpus in different domains by using both speech or text only data. The proposed method works effectively by adapting to different domains, showing good performance in the target domain and not degrading much in the source domain.

A Proposal of Remaining Useful Life Prediction Model for Turbofan Engine based on k-Nearest Neighbor (k-NN을 활용한 터보팬 엔진의 잔여 유효 수명 예측 모델 제안)

  • Kim, Jung-Tae;Seo, Yang-Woo;Lee, Seung-Sang;Kim, So-Jung;Kim, Yong-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.611-620
    • /
    • 2021
  • The maintenance industry is mainly progressing based on condition-based maintenance after corrective maintenance and preventive maintenance. In condition-based maintenance, maintenance is performed at the optimum time based on the condition of equipment. In order to find the optimal maintenance point, it is important to accurately understand the condition of the equipment, especially the remaining useful life. Thus, using simulation data (C-MAPSS), a prediction model is proposed to predict the remaining useful life of a turbofan engine. For the modeling process, a C-MAPSS dataset was preprocessed, transformed, and predicted. Data pre-processing was performed through piecewise RUL, moving average filters, and standardization. The remaining useful life was predicted using principal component analysis and the k-NN method. In order to derive the optimal performance, the number of principal components and the number of neighbor data for the k-NN method were determined through 5-fold cross validation. The validity of the prediction results was analyzed through a scoring function while considering the usefulness of prior prediction and the incompatibility of post prediction. In addition, the usefulness of the RUL prediction model was proven through comparison with the prediction performance of other neural network-based algorithms.

A Study on the Development of Readmission Predictive Model (재입원 예측 모형 개발에 관한 연구)

  • Cho, Yun-Jung;Kim, Yoo-Mi;Han, Seung-Woo;Choe, Jun-Yeong;Baek, Seol-Gyeong;Kang, Sung-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.435-447
    • /
    • 2019
  • In order to prevent unnecessary re-admission, it is necessary to intensively manage the groups with high probability of re-admission. For this, it is necessary to develop a re-admission prediction model. Two - year discharge summary data of one university hospital were collected from 2016 to 2017 to develop a predictive model of re-admission. In this case, the re-admitted patients were defined as those who were discharged more than once during the study period. We conducted descriptive statistics and crosstab analysis to identify the characteristics of rehospitalized patients. The re-admission prediction model was developed using logistic regression, neural network, and decision tree. AUC (Area Under Curve) was used for model evaluation. The logistic regression model was selected as the final re-admission predictive model because the AUC was the best at 0.81. The main variables affecting the selected rehospitalization in the logistic regression model were Residental regions, Age, CCS, Charlson Index Score, Discharge Dept., Via ER, LOS, Operation, Sex, Total payment, and Insurance. The model developed in this study was limited to generalization because it was two years data of one hospital. It is necessary to develop a model that can collect and generalize long-term data from various hospitals in the future. Furthermore, it is necessary to develop a model that can predict the re-admission that was not planned.

Analyzing the Effect of Characteristics of Dictionary on the Accuracy of Document Classifiers (용어 사전의 특성이 문서 분류 정확도에 미치는 영향 연구)

  • Jung, Haegang;Kim, Namgyu
    • Management & Information Systems Review
    • /
    • v.37 no.4
    • /
    • pp.41-62
    • /
    • 2018
  • As the volume of unstructured data increases through various social media, Internet news articles, and blogs, the importance of text analysis and the studies are increasing. Since text analysis is mostly performed on a specific domain or topic, the importance of constructing and applying a domain-specific dictionary has been increased. The quality of dictionary has a direct impact on the results of the unstructured data analysis and it is much more important since it present a perspective of analysis. In the literature, most studies on text analysis has emphasized the importance of dictionaries to acquire clean and high quality results. However, unfortunately, a rigorous verification of the effects of dictionaries has not been studied, even if it is already known as the most essential factor of text analysis. In this paper, we generate three dictionaries in various ways from 39,800 news articles and analyze and verify the effect each dictionary on the accuracy of document classification by defining the concept of Intrinsic Rate. 1) A batch construction method which is building a dictionary based on the frequency of terms in the entire documents 2) A method of extracting the terms by category and integrating the terms 3) A method of extracting the features according to each category and integrating them. We compared accuracy of three artificial neural network-based document classifiers to evaluate the quality of dictionaries. As a result of the experiment, the accuracy tend to increase when the "Intrinsic Rate" is high and we found the possibility to improve accuracy of document classification by increasing the intrinsic rate of the dictionary.

Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity (주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법)

  • Kim, Hye-Jin;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.299-306
    • /
    • 2022
  • In recent, sensors embedded in robots, equipment, and circuits have become common, and research for diagnosing device failures by learning measured sensor data is being actively conducted. This failure diagnosis study is divided into a classification model for predicting failure situations or types and a regression model for numerically predicting failure conditions. In the case of a classification model, it simply checks the presence or absence of a failure or defect (Class), whereas a regression model has a higher learning difficulty because it has to predict one value among countless numbers. So, the reason that regression modeling is more difficult is that there are many irregular situations in which it is difficult to determine one output from a similar input when predicting by matching input and output. Therefore, in this paper, we focus on input and output data with periodicity, analyze the input/output relationship, and secure regularity between input and output data by performing sliding window-based input data patterning. In order to apply the proposed method, in this study, current and temperature data with periodicity were collected from MMC(Modular Multilevel Converter) circuit system and learning was carried out using ANN. As a result of the experiment, it was confirmed that when a window of 2% or more of one cycle was applied, performance of 97% or more of fit could be secured.

Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique (점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신)

  • Kim, Chulpyo;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.29-39
    • /
    • 2017
  • Various electronic warfare situations drive the need to develop an integrated electronic warfare simulator that can perform electronic warfare modeling and simulation on radar threats. In this paper, we analyze the components of a simulation system to reversely model the radar threats that emit electromagnetic signals based on the parameters of the electronic information, and propose a method to gradually maintain the reverse extrapolation model of RF threats. In the experiment, we will evaluate the effectiveness of the incremental model update and also assess the integration method of reverse extrapolation models. The individual model of RF threats are constructed by using decision tree, naive Bayesian classifier, artificial neural network, and clustering algorithms through Euclidean distance and cosine similarity measurement, respectively. Experimental results show that the accuracy of reverse extrapolation models improves, while the size of the threat sample increases. In addition, we use voting, weighted voting, and the Dempster-Shafer algorithm to integrate the results of the five different models of RF threats. As a result, the final decision of reverse extrapolation through the Dempster-Shafer algorithm shows the best performance in its accuracy.

Usefulness of Data Mining in Criminal Investigation (데이터 마이닝의 범죄수사 적용 가능성)

  • Kim, Joon-Woo;Sohn, Joong-Kweon;Lee, Sang-Han
    • Journal of forensic and investigative science
    • /
    • v.1 no.2
    • /
    • pp.5-19
    • /
    • 2006
  • Data mining is an information extraction activity to discover hidden facts contained in databases. Using a combination of machine learning, statistical analysis, modeling techniques and database technology, data mining finds patterns and subtle relationships in data and infers rules that allow the prediction of future results. Typical applications include market segmentation, customer profiling, fraud detection, evaluation of retail promotions, and credit risk analysis. Law enforcement agencies deal with mass data to investigate the crime and its amount is increasing due to the development of processing the data by using computer. Now new challenge to discover knowledge in that data is confronted to us. It can be applied in criminal investigation to find offenders by analysis of complex and relational data structures and free texts using their criminal records or statement texts. This study was aimed to evaluate possibile application of data mining and its limitation in practical criminal investigation. Clustering of the criminal cases will be possible in habitual crimes such as fraud and burglary when using data mining to identify the crime pattern. Neural network modelling, one of tools in data mining, can be applied to differentiating suspect's photograph or handwriting with that of convict or criminal profiling. A case study of in practical insurance fraud showed that data mining was useful in organized crimes such as gang, terrorism and money laundering. But the products of data mining in criminal investigation should be cautious for evaluating because data mining just offer a clue instead of conclusion. The legal regulation is needed to control the abuse of law enforcement agencies and to protect personal privacy or human rights.

  • PDF

The Impact of Self-efficacy on Job Engagement and Job Performance of SMEs' Members: SEM-ANN Analysis (중소기업 조직구성원의 자기효능감이 직무열의와 직무성과에 미치는 영향: 구조모형분석-인공신경망 분석의 적용)

  • Kang, Tae-Won;Lee, Yong-Ki;Lee, Yong-Suk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.6
    • /
    • pp.155-166
    • /
    • 2018
  • The purpose of this study is to analyze the impact of self-efficacy of SMEs' organization members on job engagement and job performance, and to analyze the difference between gender and marital status by applying SEM-ANN analysis. To accomplish the study purpose, 285 valid samples were collected from 400 SMEs' organization members and analyzed. In this study, self - efficacy consisted of three sub-dimensions: self-confidence, self-regulation efficacy, and task difficulty preference. As a result of the analysis, self - efficacy such as self-confidence, self-regulation efficacy, and task difficulty preference had a positive direct effect on job engagement. In addition, self-efficacy and self-control efficacy have a positive effect on job performance, but the preference of task difficulty has no significant effect. In addition, job engagement has a positive(+) effect on job performance, and has a mediating role in the relationship between self-efficacy and job performance. Also, married males preferred self-regulation efficacy, while females preferred self-regulation and self-control efficacy regardless of marital status. The purpose of this study is to present the framework of self-efficacy-job engagement-job performance of SMEs by measuring the self-efficacy related researches mainly in education and service industries, and is meaningful that companies can help to find the basis of management of organization members by gender and marital status of organization members. In addition, the SEM-ANN analysis process of this study is different in that it explains the nonlinear (nonobservative) relationship that can analyze the influence or the combination of the reference variables in the linear (compensatory) relation using the SEM.