• 제목/요약/키워드: Neural Network Modeling

검색결과 745건 처리시간 0.035초

Hybrid 신경망을 이용한 산업폐수 공정 모델링

  • 이대성;박종문
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.133-136
    • /
    • 2000
  • In recent years, hybrid neural network approaches which combine neural networks and mechanistic models have been gaining considerable interests. These approaches are potentially very efficient to obtain more accurate predictions of process dynamics by combining mechanistic and neural models in such a way that the neural network model properly captures unknown and nonlinear parts of the mechanistic model. In this work, such an approach was applied in the modeling of a full-scale coke wastewater treatment process. First, a simplified mechanistic model was developed based on the Activated Sludge Model No.1 and the specific process knowledge, Then neural network was incorporated with the mechanistic model to compensate the errors between the mechanistic model and the process data. Simulation and actual process data showed that the hybrid modeling approach could predict accurate process dynamics of industrial wastewater treatment plant. The promising results indicated that the hybrid modeling approach could be a useful tool for accurate and cost-effective modeling of biochemical processes.

  • PDF

Logical Combinations of Neural Networks

  • Pradittasnee, Lapas;Thammano, Arit;Noppanakeepong, Suthichai
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.1053-1056
    • /
    • 2000
  • In general, neural networks based modeling involves trying multiple networks with different architectures and/or training parameters in order to achieve the best accuracy. Only the single best-trained neural network is chosen, while the rest are discarded. However, using only the single best network may never give the best solution in every situation. Many researchers, therefore, propose methods to improve the accuracy of neural networks based modeling. In this paper, the idea of the logical combinations of neural networks is proposed and discussed in detail. The logical combination is constructed by combining the corresponding outputs of the neural networks with the logical “And” node. The experimental results based on simulated data show that the modeling accuracy is significantly improved when compared to using only the single best-trained neural network.

  • PDF

학습기능을 갖는 자동 규칙 생성 퍼지 신경망 (Fuzzy Neural Network with Rule Generaton Nased on Back-Propagation Algorithm)

  • 정재경;이동윤;정기욱;김완찬
    • 전자공학회논문지B
    • /
    • 제33B권4호
    • /
    • pp.191-200
    • /
    • 1996
  • This paper presetns a new fuzzy neural network for fuzzy modeling.The fuzzy neural network is composed of 4 layers and then odes of each layer represent the each step of the if-then fuzzy inference. A heuristic based on the back-propagation algorithm is proposed to ajdust the parameters of the fuzzy nerual network. We prove the feasibility of the network using the experiments on modeling a nonlinear mathematical system and the comparison with previous research.

  • PDF

자기저항 센서를 이용한 지능형 자율주행 전기자동차의 신경회로망 조향 제어기 개발 (Development of the Neural Network Steering Controller based on Magneto-Resistive Sensor of Intelligent Autonomous Electric Vehicle)

  • 김태곤;손석준;유영재;김의선;임영철;이주상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.196-196
    • /
    • 2000
  • This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, teaming itself, and the adequacy of the design controller. The performance of the controller can be verified through simulation. The real autonomous electric vehicle using neural network controller verified good results.

  • PDF

유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용 (The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System)

  • 최재호;오성권;안태천;황형수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

Obstacle Modeling for Environment Recognition of Mobile Robots Using Growing Neural Gas Network

  • Kim, Min-Young;Hyungsuck Cho;Kim, Jae-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.134-141
    • /
    • 2003
  • A major research issue associated with service robots is the creation of an environment recognition system for mobile robot navigation that is robust and efficient on various environment situations. In recent years, intelligent autonomous mobile robots have received much attention as the types of service robots for serving people and industrial robots for replacing human. To help people, robots must be able to sense and recognize three dimensional space where they live or work. In this paper, we propose a three dimensional environmental modeling method based on an edge enhancement technique using a planar fitting method and a neural network technique called "Growing Neural Gas Network." Input data pre-processing provides probabilistic density to the input data of the neural network, and the neural network generates a graphical structure that reflects the topology of the input space. Using these methods, robot's surroundings are autonomously clustered into isolated objects and modeled as polygon patches with the user-selected resolution. Through a series of simulations and experiments, the proposed method is tested to recognize the environments surrounding the robot. From the experimental results, the usefulness and robustness of the proposed method are investigated and discussed in detail.in detail.

유전알고리즘과 신경회로망을 이용한 플라즈마 식각공정의 모델링과 최적제어입력탐색 (Modeling and optimal control input tracking using neural network and genetic algorithm in plasma etching process)

  • 고택범;차상엽;유정식;우광방;문대식;곽규환;김정곤;장호승
    • 대한전기학회논문지
    • /
    • 제45권1호
    • /
    • pp.113-122
    • /
    • 1996
  • As integrity of semiconductor device is increased, accurate and efficient modeling and recipe generation of semiconductor fabrication procsses are necessary. Among the major semiconductor manufacturing processes, dry etc- hing process using gas plasma and accelerated ion is widely used. The process involves a variety of the chemical and physical effects of gas and accelerated ions. Despite the increased popularity, the complex internal characteristics made efficient modeling difficult. Because of difficulty to determine the control input for the desired output, the recipe generation depends largely on experiences of the experts with several trial and error presently. In this paper, the optimal control of the etching is carried out in the following two phases. First, the optimal neural network models for etching process are developed with genetic algorithm utilizing the input and output data obtained by experiments. In the second phase, search for optimal control inputs in performed by means of using the optimal neural network developed together with genetic algorithm. The results of study indicate that the predictive capabilities of the neural network models are superior to that of the statistical models which have been widely utilized in the semiconductor factory lines. Search for optimal control inputs using genetic algorithm is proved to be efficient by experiments. (author). refs., figs., tabs.

  • PDF

신경망 이론을 적용한 납삽입 적층 고무베어링의 비선형 모델링 기법에 관한 연구 (A Study on the Nonlinear Modeling of Lead Rubber Bearings by a Neural Network Theory)

  • 허영철;김영중;김병현
    • 한국지진공학회논문집
    • /
    • 제8권4호
    • /
    • pp.63-69
    • /
    • 2004
  • 본 논문에서는 납삽입 적층 고무베어링의 비선형 모델링에 대해 신경망 이론을 적용한 수학적 모델링 기법을 제안하였다. 신경망 모델의 수치검증을 위해 납삽입 적층 고무베어링이 설치된 프레임 축소모델의 진동대 실험 자료가 사용되었는데, 제안된 신경망의 학습 및 예측을 위한 하중 자료로써 백색잡음과 세 종류의 지진파를 선택하였다. 지진파의 경우 PGA의 세기를 달리하여 신경망 모델의 계산정도를 고찰하였다. 그 결과, 납삽입 적층 고무베어링의 전단변위가 신경망의 학습 영역을 벗어나지 않는 경우 실험결과의 복잡한 이력곡선을 잘 추종하였고 신경망 이론에 의한 비선형 모델링 기법이 유용하게 활용될 수 있다는 가능성을 확인할 수 있었다.

유전자 알고리즘을 활용한 인공신경망 모형 최적입력변수의 선정 : 부도예측 모형을 중심으로 (Using GA based Input Selection Method for Artificial Neural Network Modeling Application to Bankruptcy Prediction)

  • 홍승현;신경식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.365-373
    • /
    • 1999
  • Recently, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as a model construction process. Irrespective of the efficiency of a learning procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network models. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.

  • PDF

신경회로망 기반 우리나라 산업안전시스템의 모델링 (Neural Network-based Modeling of Industrial Safety System in Korea)

  • 최기흥
    • 한국안전학회지
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2023
  • It is extremely important to design safety-guaranteed industrial processes because such process determine the ultimate outcomes of industrial activities, including worker safety. Application of artificial intelligence (AI) in industrial safety involves modeling industrial safety systems by using vast amounts of safety-related data, accident prediction, and accident prevention based on predictions. As a preliminary step toward realizing AI-based industrial safety in Korea, this study discusses neural network-based modeling of industrial safety systems. The input variables that are the most discriminatory relative to the output variables of industrial safety processes are selected using two information-theoretic measures, namely entropy and cross entropy. Normalized frequency and severity of industrial accidents are selected as the output variables. Our simulation results confirm the effectiveness of the proposed neural network model and, therefore, the feasibility of extending the model to include more input and output variables.