The Journal of the Korea institute of electronic communication sciences
/
v.17
no.1
/
pp.99-104
/
2022
Artificial intelligence is getting a crucial part of our lives with its incredible benefits. Machines outperform humans in recognizing objects in images, particularly in classifying people into correct age and gender groups. In this respect, age and gender classification has been one of the hot topics among computer vision researchers in recent decades. Deployment of deep Convolutional Neural Network(: CNN) models achieved state-of-the-art performance. However, the most of CNN based architectures are very complex with several dozens of training parameters so they require much computation time and resources. For this reason, we propose a new CNN-based classification algorithm with significantly fewer training parameters and training time compared to the existing methods. Despite its less complexity, our model shows better accuracy of age and gender classification on the UTKFace dataset.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.3
/
pp.333-340
/
2022
The COVID-19 has made everyone anxious and people need to keep their distance. It is necessary to conduct collective assessment and screening of college students' mental health in the opening season of every year. This study uses and trains a multi-layer perceptron neural network model for deep learning to identify facial emotions. After the training, real pictures and videos were input for face detection. After detecting the positions of faces in the samples, emotions were classified, and the predicted emotional results of the samples were sent back and displayed on the pictures. The results show that the accuracy is 93.2% in the test set and 95.57% in practice. The recognition rate of Anger is 95%, Disgust is 97%, Happiness is 96%, Fear is 96%, Sadness is 97%, Surprise is 95%, Neutral is 93%, such efficient emotion recognition can provide objective data support for capturing negative. Deep learning emotion recognition system can cooperate with traditional psychological activities to provide more dimensions of psychological indicators for health.
Tomato crops are easy to expose to disease and spread in a short period of time, so late measures against disease are directly related to production and sales, which can cause damage. Therefore, there is a need for a service that enables early prevention by simply and accurately diagnosing tomato diseases in the field. In this paper, we construct a system that applies a deep learning-based model in which ImageNet transition is learned in advance to classify and serve nine classes of tomatoes for disease and normal cases. We use the input of MobileNet, ResNet, with a deep learning-based CNN structure that builds a lighter neural network using a composite product for the image set of leaves classifying tomato disease and normal from the Plant Village dataset. Through the learning of two proposed models, it is possible to provide fast and convenient services using MobileNet with high accuracy and learning speed.
In manufacturing sites, bearing fault in eletrically driven motors cause the entire system to shut down. Stopping the operation of this environment causes huge losses in time and money. The reason of this bearing defects can be various factors such as wear due to continuous contact of rotating elements, excessive load addition, and operating environment. In this paper, a motor driving environment is created which is similar to the domestic manufacturing sites. In addition, based on the established environment, we propose a dataset for bearing fault detection by collecting changes in vibration characteristics that vary depending on normal and defective conditions. The sensor used to collect the vibration characteristics is Microphone G.R.A.S. 40PH-10. We used various machine learning models to build a prototype bearing fault detection system trained on the proposed dataset. As the result, based on the deep neural network model, it shows high accuracy performance of 92.3% in the time domain and 98.3% in the frequency domain.
Ji, Yerim;Lim, Seoyeon;Park, Soyeon;Kim, Sangha;Dong, Suh-Yeon
Journal of Korea Multimedia Society
/
v.24
no.11
/
pp.1481-1491
/
2021
Since most biosignals rely on contact-based measurement, there is still a problem in that it is hard to provide convenience to users by applying them to daily life. In this paper, we present a mobile application for estimating heart rate based on a deep learning model. The proposed application measures heart rate by capturing real-time face images in a non-contact manner. We trained a three-dimensional convolutional neural network to predict photoplethysmography (PPG) from face images. The face images used for training were taken in various movements and situations. To evaluate the performance of the proposed system, we used a pulse oximeter to measure a ground truth PPG. As a result, the deviation of the calculated root means square error between the heart rate from remote PPG measured by the proposed system and the heart rate from the ground truth was about 1.14, showing no significant difference. Our findings suggest that heart rate measurement by mobile applications is accurate enough to help manage health during daily life.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.5
/
pp.881-890
/
2022
As individual and group users actively use drones, the risks (Intrusion, Information leakage, and Sircraft crashes and so on) in no-fly zones are also increasing. Therefore, it is necessary to build a system that can detect drones intruding into the no-fly zone. General acoustic drone detection researches do not derive location-independent performance by directly learning drone sound including environmental noise in a deep learning model to overcome environmental noise. In this paper, we propose a drone detection system that collects sounds including environmental noise, and detects drones by removing noise from target sound. After removing environmental noise from the collected sound, the proposed system predicts the drone sound using Mel spectrogram and CNN deep learning. As a result, It is confirmed that the drone detection performance, which was weak due to unstudied environmental noises, can be improved by more than 7%.
With the explosive growth of social media, its abundant text-based data generated by web users has become an important source for data analysis. For example, we often witness online movie reviews from the 'Naver Movie' affecting the general public to decide whether they should watch the movie or not. This study has conducted analysis on the Naver Movie's text-based review data to predict the actual ratings. After examining the distribution of movie ratings, we performed semantics analysis using Korean Natural Language Processing. This research sought to find the best review rating prediction model by comparing machine learning and deep learning models. We also compared various regression and classification models in 2-class and multi-class cases. Lastly we explained the causes of review misclassification related to movie review data characteristics.
The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.1
/
pp.29-38
/
2023
Although the biosignal is the best way to represent the human condition, it is difficult to acquire the biosignal of a driver driving for detecting driver's condition. As one of the methods to overcome this limitation, this paper proposes a driving stress monitoring system based on information provided by OBD-II(on-board diagnostics version II). The driving information and EDA(Electrodermal activity) data are obtained through the OBD-II scanner and E4 wristband, respectively. EDA data is used as ground truth to distinguish whether driver is stressed or not. MLP(multi-layer perceptron) neural network is used as a model to detect driving stress and is trained using driving data for about a month. To evaluate the proposed system, we used about 1 hour of driving data and the accuracy is 92%.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.292-292
/
2023
본 연구에서는 인공신경망을 이용한 통계적 모형을 구성하여 금강권역의 봄철(3~5월) 강수량 예측을 수행하였다. 통계적 모형의 예측인자로서는 NOAA 등에서 제공하는 AAO, AMM, AO 등 36종의 기후지수와 대상권역인 금강권역의 강수량, 기온 등의 기상인자 8종 등 총 44종의 기후지수를 활용하였다. 예측대상기간을 기준으로 선행기간(1~18개월)에 따른 상관성을 분석하여 상관도가 높은 10개의 기후지수를 예측인자로 선정하였다. 예측모형 형태는 10개의 입력층과 1개의 은닉층으로 되어 있는 인공신경망모형을 구성하였다. 모형 구성과정에서의 불확실성을 최소화하고 예측모형의 적합도를 높이기 위해 예측대상기간을 기준으로 과거 40년간의 자료에 대해 임의로 20년간 자료를 선별하여 모형을 구성하고, 너머지 기간에 대해 검증하는 무작위 교차검증을 반복하여, 예측대상기간 및 예측시점에 따라 각각 적합도가 높은 1000개의 예측모형을 선별하였다. 과거기간(1991~2022년)을 대상으로 예측시점에 따라 각 연도별 1000개의 예측결과를 도출하여, 실제 해당년도의 관측값과의 비교를 통해 예측성을 분석하였다. 예측성은 크게 예측치의 최대값과 최소값 범위 및 예측치의 25%~75% 범위 안에 관측치가 포함될 확률, 그리고 과거 관측값의 3분위 구간을 기준으로 한 예측확률 등을 평가하였다. 관측치가 예측치의 범위 안에 포함될 확률은 평균 87.5%, 예측치의 25~75% 범위 안에 포함될 확률은 30.2%로 나타났으며, 3분위 예측확률은 35.6%로 분석되었다. 관측값과의 일대일 비교는 정확도가 떨어지지만 3분위 예측확률이 33.3% 이상인 점으로 볼 때 예측성은 확보된다고 볼 수 있다. 다만, 우리나라 강수량의 불규칙성과 통계적 모형 특성상 과거 관측되지 않은 패턴에 대해서는 예측이 어려운 문제가 있어, 특정년도의 예측결과가 관측치를 크게 벗어나는 경우도 종종 나타나고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.