• 제목/요약/키워드: Neural Network Model

검색결과 4,651건 처리시간 0.048초

Recurrent Neural Network를 이용한 이미지 캡션 생성 (Image Caption Generation using Recurrent Neural Network)

  • 이창기
    • 정보과학회 논문지
    • /
    • 제43권8호
    • /
    • pp.878-882
    • /
    • 2016
  • 이미지의 내용을 설명하는 캡션을 자동으로 생성하는 기술은 이미지 인식과 자연어처리 기술을 필요로 하는 매우 어려운 기술이지만, 유아 교육이나 이미지 검색, 맹인들을 위한 네비게이션 등에 사용될 수 있는 중요한 기술이다. 본 논문에서는 이미지 캡션 생성을 위해 Convolutional Neural Network(CNN)으로 인코딩된 이미지 정보를 입력으로 갖는 이미지 캡션 생성에 최적화된 Recurrent Neural Network(RNN) 모델을 제안하고, 실험을 통해 본 논문에서 제안한 모델이 Flickr 8K와 Flickr 30K, MS COCO 데이터 셋에서 기존의 연구들보다 높은 성능을 얻음을 보인다.

의사결정트리와 인공 신경망 기법을 이용한 침입탐지 효율성 비교 연구 (A Comparative Study on the Performance of Intrusion Detection using Decision Tree and Artificial Neural Network Models)

  • 조성래;성행남;안병혁
    • 디지털산업정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.33-45
    • /
    • 2015
  • Currently, Internet is used an essential tool in the business area. Despite this importance, there is a risk of network attacks attempting collection of fraudulence, private information, and cyber terrorism. Firewalls and IDS(Intrusion Detection System) are tools against those attacks. IDS is used to determine whether a network data is a network attack. IDS analyzes the network data using various techniques including expert system, data mining, and state transition analysis. This paper tries to compare the performance of two data mining models in detecting network attacks. They are decision tree (C4.5), and neural network (FANN model). I trained and tested these models with data and measured the effectiveness in terms of detection accuracy, detection rate, and false alarm rate. This paper tries to find out which model is effective in intrusion detection. In the analysis, I used KDD Cup 99 data which is a benchmark data in intrusion detection research. I used an open source Weka software for C4.5 model, and C++ code available for FANN model.

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권2호
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

실온하강신간 예측을 위한 신경망 모델의 개발 (Development of Artificial Neural Network Model for the Prediction of Descending Time of Room Air Temperature)

  • 양인호;김광우
    • 설비공학논문집
    • /
    • 제12권11호
    • /
    • pp.1038-1047
    • /
    • 2000
  • The objective of this study is to develop an optimized Artificial Neural Network(ANN) model to predict the descending time of room air temperature. For this, program for predicting room air temperature and ANN program using generalized delta rule were collected through simulation for predicting room air temperature. ANN was trained and the ANN model having the optimized values-learning rate, moment, bias, number of hidden layer, and number of neuron of hidden layer was presented.

  • PDF

ANFIS 기반 분류모형의 설계 및 성능평가 (Design and Evaluation of ANFIS-based Classification Model)

  • 송희석;김재경
    • 지능정보연구
    • /
    • 제15권3호
    • /
    • pp.151-165
    • /
    • 2009
  • 퍼지신경망 모형은 인공신경망의 네트워크 구조 표현방법 및 학습알고리듬과 퍼지시스템의 추론방법을 통합한 모형으로 제어 및 예측분야에 성공적으로 적용되고 있다. 본 연구에서는 퍼지신경망 모형 중 우수한 예측정확도로 인해 최근 각광받고 있는ANFIS (Adaptive Network-based Fuzzy Inference System)모형을 기반으로 하는 분류모형을 설계하고 기존의 분류기법(C5.0 의사결정나무)과 비교하여 분류 정확성 관점에서 평가한다. ANFIS 추론의 경우, 최종 결과값이 계급값이 아닌 연속형 변수값을 취하게 되므로 산출된 결과값을 이용하여 적절한 계급값을 할당하는 과정이 필요하다. 본 연구에서는 의사결정나무기법을 이용하여 계급값을 할당하는 방식과 군집분석을 이용하여 계급값을 할당하는 두 가지 방식을 제안하고 두 가지 데이터 세트에 적용하여 ANFIS를 기반으로 한 분류모형의 정확도를 평가하였다.

  • PDF

신경망 분리모형과 사례기반추론을 이용한 기업 신용 평가 (Corporate Credit Rating using Partitioned Neural Network and Case- Based Reasoning)

  • 김다윗;한인구;민성환
    • Journal of Information Technology Applications and Management
    • /
    • 제14권2호
    • /
    • pp.151-168
    • /
    • 2007
  • The corporate credit rating represents an assessment of the relative level of risk associated with the timely payments required by the debt obligation. In this study, the corporate credit rating model employs artificial intelligence methods including Neural Network (NN) and Case-Based Reasoning (CBR). At first we suggest three classification models, as partitioned neural networks, all of which convert multi-group classification problems into two group classification ones: Ordinal Pairwise Partitioning (OPP) model, binary classification model and simple classification model. The experimental results show that the partitioned NN outperformed the conventional NN. In addition, we put to use CBR that is widely used recently as a problem-solving and learning tool both in academic and business areas. With an advantage of the easiness in model design compared to a NN model, the CBR model proves itself to have good classification capability through the highest hit ratio in the corporate credit rating.

  • PDF

An Integrated Neural Network Model for Domain Action Determination in Goal-Oriented Dialogues

  • Lee, Hyunjung;Kim, Harksoo;Seo, Jungyun
    • Journal of Information Processing Systems
    • /
    • 제9권2호
    • /
    • pp.259-270
    • /
    • 2013
  • A speaker's intentions can be represented by domain actions (domain-independent speech act and domain-dependent concept sequence pairs). Therefore, it is essential that domain actions be determined when implementing dialogue systems because a dialogue system should determine users' intentions from their utterances and should create counterpart intentions to the users' intentions. In this paper, a neural network model is proposed for classifying a user's domain actions and planning a system's domain actions. An integrated neural network model is proposed for simultaneously determining user and system domain actions using the same framework. The proposed model performed better than previous non-integrated models in an experiment using a goal-oriented dialogue corpus. This result shows that the proposed integration method contributes to improving domain action determination performance.

Deep Neural Network 언어모델을 위한 Continuous Word Vector 기반의 입력 차원 감소 (Input Dimension Reduction based on Continuous Word Vector for Deep Neural Network Language Model)

  • 김광호;이동현;임민규;김지환
    • 말소리와 음성과학
    • /
    • 제7권4호
    • /
    • pp.3-8
    • /
    • 2015
  • In this paper, we investigate an input dimension reduction method using continuous word vector in deep neural network language model. In the proposed method, continuous word vectors were generated by using Google's Word2Vec from a large training corpus to satisfy distributional hypothesis. 1-of-${\left|V\right|}$ coding discrete word vectors were replaced with their corresponding continuous word vectors. In our implementation, the input dimension was successfully reduced from 20,000 to 600 when a tri-gram language model is used with a vocabulary of 20,000 words. The total amount of time in training was reduced from 30 days to 14 days for Wall Street Journal training corpus (corpus length: 37M words).

A STUDY OF SIMULATION AND CONTROL OF PAC COSING PROCESS IN WATER PURIFICATION SYSTEM

  • Nahm, Euisuck;Lee, Subum;Woo, Kwangbang;Han, Taehan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.75-78
    • /
    • 1995
  • In this paper it is concerned to develop control method using jar-test results in order to predict the optimum dosage of coaglant, PAC(PoliAluminum Chloride). Considering the relations with the reactions with the reaction of coagulation and flocculation, the five independent variables ( e, g, turbidity of raw water, water turbidity in flocculators, temperature, pH, and alkalynity) are selected out of parameters and they are put into calculation to develop a neural network model for PAC dosing process in water purification system. This model is utilized to predict optimum dosage of PAC. That is, the optimum dosage of PAC is searched in neural network model for PAC dosing process to minimize the water turbidity in flocculators. This searching is implemented by means of expert heuristics. The efficacy of the proposed contorl schemem and feasibility of acquired neural network model for PAC dosing contorl in water purification system is evaluated by means of computer simulation.

  • PDF

유량 보간 신경망 모형의 개발 및 낙동강 유역에 적용 (Development of Flow Interpolation Model Using Neural Network and its Application in Nakdong River Basin)

  • 손아롱;한건연;김지은
    • 환경영향평가
    • /
    • 제18권5호
    • /
    • pp.271-280
    • /
    • 2009
  • The objective of this study is to develop a reliable flow forecasting model based on neural network algorithm in order to provide flow rate at stream sections without flow measurement in Nakdong river. Stream flow rate measured at 8-days interval by Nakdong river environment research center, daily upper dam discharge and precipitation data connecting upstream stage gauge were used in this development. Back propagation neural network and multi-layer with hidden layer that exists between input and output layer are used in model learning and constructing, respectively. Model calibration and verification is conducted based on observed data from 3 station in Nakdong river.