• Title/Summary/Keyword: Neural Network Model

Search Result 4,651, Processing Time 0.033 seconds

Modeling of Nuclear Power Plant Steam Generator using Neural Networks (신경회로망을 이용한 원자력발전소 증기발생기의 모델링)

  • 이재기;최진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.551-560
    • /
    • 1998
  • This paper presents a neural network model representing complex hydro-thermo-dynamic characteristics of a steam generator in nuclear power plants. The key modeling processes include training data gathering process, analysis of system dynamics and determining of the neural network structure, training process, and the final process for validation of the trained model. In this paper, we suggest a training data gathering method from an unstable steam generator so that the data sufficiently represent the dynamic characteristics of the plant over a wide operating range. In addition, we define the inputs and outputs of neural network model by analyzing the system dimension, relative degree, and inputs/outputs of the plant. Several types of neural networks are applied to the modeling and training process. The trained networks are verified by using a class of test data, and their performances are discussed.

  • PDF

Techniques for Yield Prediction from Corn Aerial Images - A Neural Network Approach -

  • Zhang, Q.;Panigrahi, S.;Panda, S.S.;Borhan, Md.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.18-28
    • /
    • 2002
  • Neural network based models were developed and evaluated for predicting corn yield from aerial images based on 1998 and 1994 image data. The model used images in multi-spectral bands such as R, G, B, and IR (Red, Green, Blue and Infrared). The inputs to the neural network consisted of mean and standard deviation of multispectral bands of the aerial images. Performances of several neural network architectures using back-propagation with momentum were compared. The maximum yield prediction accuracy obtained was 97.81%. The BPNN model prediction accuracy could be enhanced by using more number of observations to the model, other data transformation techniques, or by performing optical calibration of the aerial image.

  • PDF

Model for Papez Circuit Using Neural Network

  • Kim, Seong-Joo;Seo, Jae-Yong;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.423-426
    • /
    • 2003
  • In this paper, we use the modular neural network and recurrent neural network structure to implement the artificial brain information processing. We also select related adaptive learning methods to learn the entirely new input in the existed neural network. With this, a part of information process in brain is implemented as and autonomous and adaptive model by neural network and further more, the entire model for information process in brain can be introduced.

  • PDF

Width Prediction Model and Control System using Neural Network and Fuzzy in Hot Strip Finishing Mills (신경회로망과 퍼지 논리를 이용한 열간 사상압연 폭 예측 모델 및 제어기 개발)

  • Hwang, I-Cheal;Park, Cheol-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.296-303
    • /
    • 2007
  • This paper proposes a new width control system composed of an ANWC(Automatic Neural network based Width Control) and a fuzzy-PID controller in hot strip finishing mills which aims at obtaining the desirable width. The ANWC is designed using a neural network based width prediction model to minimize a width variation between the measured width and its target value. Input variables for the neural network model are chosen by using the hypothesis testing. The fuzzy-PlD control system is also designed to obtain the fast looper response and the high width control precision in the finishing mill. It is shown through the field test of the Pohang no. 1 hot strip mill of POSCO that the performance of the width margin is considerably improved by the proposed control schemes.

Estimation of Hardened Depth in Laser Surface Hardening Processes Using Neural Networks (레이저 표면경화공정에서 신경회로망을 이용한 경화층깊이 추정)

  • 박영준;조형석;한유희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1907-1914
    • /
    • 1995
  • An on-line measurement of the workpiece hardened depth in laser surface hardening processes is very much difficult to achieve, since the hardening process occurs in depth wise direction. In this paper, the hardened depth is estimated using a multilayered neural network. Input data of the neural network are the surface temperatures at arbitrary chosen five surface points, laser power and traveling speed of laser beam torch. To simulate the actual hardening process, a finite difference method(FDM) is used to model the process. Since this model yields the calculation results of the temperature distribution around the workpiece volume in the vicinity of the laser torch, this model is used to obtain the network's training data and laser to evaluate the performance of the neural network estimator. The simulation results show that the proposed scheme can be used to estimate the hardened depth with reasonable accuracy.

A Modular Neural Network for The GMA Welding Process Modelling (Modular 신경 회로망을 이용한 GMA 용접 프로세스 모델링)

  • 김경민;강종수;박중조;송명현;배영철;정양희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.369-373
    • /
    • 2001
  • In this paper, we proposes the steps adopted to construct the neural network model for GMAW welds. Conventional, automated process generally involves sophisticated sensing and control techniques applied to various processing parameters. Welding parameters are influenced by numerous factors, such as welding current, arc voltage, torch travel speed, electrode condition and shielding gas type and flow rate etc. In traditional work, the structural mathematical models have been used to represent this relationship. Contrary to the traditional model method, neural network models are based on non-parametric modeling techniques. For the welding process modeling, the non-linearity at well as the coupled input characteristics makes it apparent that the neural network is probably the most suitable candidate for this task. Finally, a suitable proposal to improve the construction of the model has also been presented in the paper.

  • PDF

Application of Neural Network Model to the Real-time Forecasting of Water Quality (실시간 수질 예측을 위한 신경망 모형의 적용)

  • Cho, Yong-Jin;Yeon, In-Sung;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.321-326
    • /
    • 2004
  • The objective of this study is to test the applicability of neural network models to forecast water quality at Naesa and Pyongchang river. Water quality data devided into rainy day and non-rainy day to find characteristics of them. The mean and maximum data of rainy day show higher than those of non-rainy day. And discharge correlate with TOC at Pyongchang river. Neural network model is trained to the correlation of discharge with water quality. As a result, it is convinced that the proposed neural network model can apply to the analysis of real time water quality monitoring.

Direct Adaptive Control of Chaotic Nonlinear Systems Using a Feedforward Neural Network (신경 회로망을 이용한 혼돈 비선형 시스템의 직접 적응 제어)

  • Kim, Se-Min;Choi, Yoon-Ho;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.401-403
    • /
    • 1998
  • This paper describes the neural network control method for the identification and control of chaotic nonlinear dynamical systems effectively. In our control method, the controlled system is modeled by an unknown NARMA model, and a feedforward neural network is used for identifying the chaotic system. The control signals are directly obtained by minimizing the difference between a setpoint and the output of the neural network model. Since learning algorithm guarantees that the output of the neural network model approaches that of the actual system, it is shown that the control signals obtained can also make the real system output close to the setpoint.

  • PDF

Estimating a Consolidation Behavior of Clay Using Artificial Neural Network (인공신경망을 이용한 압밀거동 예측)

  • Park, Hyung-Gyu;Kang, Myung-Chan;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.673-680
    • /
    • 2000
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a consolidation behavior of clay from soil parameter, site investigation data and the first settlement curve is proposed. The training and testing of the network were based on a database of 63 settlement curve from two different sites. Five different network models were used to study the ability of the neural network to predict the desired output to increasing degree of accuracy. The study showed that the neural network model predicted a consolidation behavior of clay reasonably well.

  • PDF

Development of the Neural Network Steering Controller based on Magneto-Resistive Sensor of Intelligent Autonomous Electric Vehicle (자기저항 센서를 이용한 지능형 자율주행 전기자동차의 신경회로망 조향 제어기 개발)

  • 김태곤;손석준;유영재;김의선;임영철;이주상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.196-196
    • /
    • 2000
  • This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, teaming itself, and the adequacy of the design controller. The performance of the controller can be verified through simulation. The real autonomous electric vehicle using neural network controller verified good results.

  • PDF