In this paper, we implemented the neuro-computer called MY-NEUPOWER in our research to carry out the artificial neural networks (ANN) calculating. An application software was developed based on a neural network using back-propagation (BP) algorithm under the UNIX platform by the specified computer language named MYPARAL. This neural network model was used as an auxiliary controller in the temperature control of sinter cooler system in steel plant which is a nonlinear system. The neural controller was trained off-line using the real input-output data as training pairs. We also made the system description of adaptive neural controller on the same temperature control system. We will carry out the whole system simulation to verify the suitability of neural controller in improving the system features.
문서의 텍스트를 바탕으로 각 문서가 속한 분류를 찾아내는 문서 분류는 자연어 처리의 기본 분야 중 하나로 주제 분류, 감정 분류 등 다양한 분야에 이용될 수 있다. 문서를 분류하기 위한 신경망 모델은 크게 단어를 기본 단위로 다루는 단어 수준 모델과 문자를 기본 단위로 다루는 문자 수준 모델로 나누어진다. 본 논문에서는 문서를 분류하는 신경망 모델의 성능을 향상시키기 위하여 문자 수준과 단어 수준의 모델을 혼합한 신경망 모델을 제안한다. 제안하는 모델은 각 단어에 대하여 문자 수준의 신경망 모델로 인코딩한 정보와 단어들의 정보를 저장하고 있는 단어 임베딩 행렬의 정보를 결합하여 각 단어에 대한 특징 벡터를 만든다. 추출된 단어들에 대한 특징 벡터를 바탕으로, 주의(attention) 메커니즘을 이용한 순환 신경망을 단어 수준과 문장 수준에 각각 적용하는 계층적 신경망 구조를 통해 문서를 분류한다. 제안한 모델에 대하여 실생활 데이터를 바탕으로 한 실험으로 효용성을 검증한다.
딥러닝 모델을 활용한 인공신경망 기계번역 (Neural machine translation)이 주류 분야로 떠오르면서 최고의 성능을 위해 모델과 데이터 언어 쌍에 대한 많은 투자와 연구가 활발하게 진행되고 있다. 그러나, 최근 대부분의 인공신경망 기계번역 연구들은 번역 문장의 품질을 극대화하는 자연어 생성을 위한 디코딩 전략 (Decoding strategy)에 대해서는 미래 연구 과제로 남겨둔 채 다양한 실험과 구체적인 분석이 부족한 상황이다. 기계번역에서 디코딩 전략은 번역 문장을 생성하는 과정에서 탐색 경로를 최적화 하고, 모델 변경 및 데이터 확장 없이도 성능 개선이 가능하다. 본 논문은 시퀀스 투 시퀀스 (Sequence to Sequence) 모델을 활용한 신경망 기반의 기계번역에서 고전적인 그리디 디코딩 (Greedy decoding)부터 최신의 방법론인 Dynamic Beam Allocation (DBA)까지 비교 분석하여 디코딩 전략의 효과와 그 의의를 밝힌다.
가중치가 없는 램 기반 신경망은 가중치를 재조정하는 기존 신경망에 비해 계산량 및 인식 시간이 적은 장점을 가지고 있다. 특히 연속적인 연관성을 갖는 제스처와 같은 행위 정보는 각각의 정보들이 시계열적 상관관계를 갖는다. 이와 같은 행위 정보를 인식하려면 일반적으로 많은 계산량과 처리 시간이 요구된다. 이런 문제점을 해결하기 위해 일반적으로 전처리 과정의 삽입 및 하드웨어 인터페이스 활용 등을 이용한다. 본 논문에서는 이와 같은 추가적인 방법 없이 순차 램 기반 누적 신경망으로 연속적인 행위 정보인 한글 복합어 수화 인식 시스템을 구현하였다. 제안된 모델의 성능을 검증하기 위하여 카메라로부터 입력받은 연속적인 복합어 수화 영상을 최소한의 이미지 처리인 경계선 검출만으로 수화 인식을 실험하였다. 경계선 검출 후 이진 영상을 전처리 과정 없이 제안된 순차 램 기반 누적 신경망 시스템으로 처리된 결과는 93%의 인식률을 얻었다.
개체명 연결이란 주어진 문장에 출현한 단어를 위키피디아와 같은 지식 기반 상의 하나의 개체와 연결하여 특정 개체가 무엇인지 식별하여 모호성을 해결하는 작업이다. 본 연구에서는 위키피디아의 링크를 이용하여 개체 표현(Entity mention)과 학습 데이터, 지식 기반을 구축한다. 또한, Mention/Context 쌍의 표현과 Entity 표현의 코사인 유사도를 이용하여 Score를 구하고, 이를 통해 개체명 연결 문제를 랭킹 문제로 변환한다. 개체의 이름과 분류뿐만 아니라 개체의 설명, 개체 임베딩 등의 자질을 이용하여 모델을 확장하고 결과를 비교한다. 확장된 모델의 개체 링킹 성능은 89.63%의 정확도를 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권5호
/
pp.1396-1412
/
2023
Conversation modeling is an important and challenging task in the field of natural language processing because it is a key component promoting the development of automated humanmachine conversation. Most recent research concerning conversation modeling focuses only on the current utterance (considered as the current question) to generate a response, and thus fails to capture the conversation's logic from its beginning. Some studies concatenate the current question with previous conversation sentences and use it as input for response generation. Another approach is to use an encoder to store all previous utterances. Each time a new question is encountered, the encoder is updated and used to generate the response. Our approach in this paper differs from previous studies in that we explicitly separate the encoding of the question from the encoding of its context. This results in different encoding models for the question and the context, capturing the specificity of each. In this way, we have access to the entire context when generating the response. To this end, we propose a deep neural network-based model, called the Context Model, to encode previous utterances' information and combine it with the current question. This approach satisfies the need for context information while keeping the different roles of the current question and its context separate while generating a response. We investigate two approaches for representing the context: Long short-term memory and Convolutional neural network. Experiments show that our Context Model outperforms a baseline model on both ConvAI2 Dataset and a collected dataset of conversational English.
BACKGROUND/OBJECTIVES: This study aimed to predict the association between nutritional intake and diabetes mellitus (DM) by developing an artificial neural network (ANN) model for older adults. SUBJECTS/METHODS: Participants aged over 65 years from the 7th (2016-2018) Korea National Health and Nutrition Examination Survey were included. The diagnostic criteria of DM were set as output variables, while various nutritional intakes were set as input variables. An ANN model comprising one input layer with 16 nodes, one hidden layer with 12 nodes, and one output layer with one node was implemented in the MATLAB® programming language. A sensitivity analysis was conducted to determine the relative importance of the input variables in predicting the output. RESULTS: Our DM-predicting neural network model exhibited relatively high accuracy (81.3%) with 11 nutrient inputs, namely, thiamin, carbohydrates, potassium, energy, cholesterol, sugar, vitamin A, riboflavin, protein, vitamin C, and fat. CONCLUSIONS: In this study, the neural network sensitivity analysis method based on nutrient intake demonstrated a relatively accurate classification and prediction of DM in the older population.
지식 그래프 기반의 질문 응답 문제는 자연어 질문들에 대한 깊은 이해뿐만 아니라, 대규모 지식 그래프 상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 필요로 한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프 상의 각 개체 노드와 이웃 노드 간의 양방향 특징 전파를 허용할뿐만 아니라, 두 이웃 노드 쌍 간의 맥락 정보까지 활용할 수 있는, 표현력이 뛰어난 쌍 선형 그래프 신경망(BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스인 Freebase, 자연어 질문 응답을 위한 벤치마크 데이터 집합들인 WebQuestionsSP와 MetaQA를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.
본 논문에서는 학술 문헌에서 표현된 단백질 간 상호 작용(Protein-Protein Interaction) 정보를 자동으로 추출하기 위한 확장된 형태의 Convolutional Neural Network (CNN) 모델을 제안한다. 이 모델은 기존에 관계 추출(Relation Extraction)을 위해 고안된 단순 자질 기반의 CNN 모델을 확장하여 다양한 전역 자질들을 추가적으로 적용함으로써 성능을 개선할 수 있는 장점이 있다. PPI 추출 성능 평가를 위해서 많이 활용되고 있는 준거 평가 컬렉션인 AIMed를 이용한 실험에서 F-스코어 기준으로 78.0%를 나타내어 현재까지 도출된 세계 최고 성능에 비해 8.3% 높은 성능을 나타내었다. 추가적으로 CNN 모델이 복잡한 언어 처리를 통한 자질 추출 작업을 하지 않고도 단백질간 상호 작용 추출에 높은 성능을 나타냄을 보였다.
다양한 정보가 대량으로 유통되는 IT 환경에서 사용자의 요구를 빠르게 파악하여 의사결정을 도와줄 수 있는 추천 시스템이 각광을 받고 있다. 그러나 현재 추천 시스템은 사용자의 취향이나 관심사가 바뀌었을 때 선호도가 즉시 시스템에 반영이 되지 않을 수가 있으며, 광고 유도로 인하여 사용자의 선호도와 무관한 아이템이 추천될 수가 있다는 문제점이 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 양방향 순환 신경망 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템을 제안하였다. 본 시스템은 사용자의 취향이나 관심사를 명확하고 객관적으로 반영하기 위해 Fuzzy-AHP를 적용하였다. 그리고 사용자가 선호하는 영화를 예측하기 위해 양방향 순환 신경망 언어 모델을 이용하여 실시간으로 수집되는 영화 관련 데이터를 분석하였다. 본 시스템의 성능을 평가하기 위해 그리드 서치를 이용하여 전체 단어 집합의 크기에 대한 학습 모델의 적합성을 확인하였다. 그 결과 본 시스템의 학습 모델은 전체 단어 집합의 크기에 따른 평균 교차 검증 지수가 97.9%로 적합하다는 것을 확인할 수 있었다. 그리고 본 모델은 네이버의 영화 평점 대비 평균 제곱근 오차가 0.66, LSTM 언어 모델은 평균 제곱근 오차가 0.805으로, 본 시스템의 영화 평점 예측성이 더 우수함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.