• 제목/요약/키워드: Neural Network Language Model

검색결과 170건 처리시간 0.025초

Artificial Neural Network and Application in Temperature Control System

  • Sugisaka, Masanori;Liu, Zhijun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.260-264
    • /
    • 1998
  • In this paper, we implemented the neuro-computer called MY-NEUPOWER in our research to carry out the artificial neural networks (ANN) calculating. An application software was developed based on a neural network using back-propagation (BP) algorithm under the UNIX platform by the specified computer language named MYPARAL. This neural network model was used as an auxiliary controller in the temperature control of sinter cooler system in steel plant which is a nonlinear system. The neural controller was trained off-line using the real input-output data as training pairs. We also made the system description of adaptive neural controller on the same temperature control system. We will carry out the whole system simulation to verify the suitability of neural controller in improving the system features.

  • PDF

문서 분류의 개선을 위한 단어-문자 혼합 신경망 모델 (Hybrid Word-Character Neural Network Model for the Improvement of Document Classification)

  • 홍대영;심규석
    • 정보과학회 논문지
    • /
    • 제44권12호
    • /
    • pp.1290-1295
    • /
    • 2017
  • 문서의 텍스트를 바탕으로 각 문서가 속한 분류를 찾아내는 문서 분류는 자연어 처리의 기본 분야 중 하나로 주제 분류, 감정 분류 등 다양한 분야에 이용될 수 있다. 문서를 분류하기 위한 신경망 모델은 크게 단어를 기본 단위로 다루는 단어 수준 모델과 문자를 기본 단위로 다루는 문자 수준 모델로 나누어진다. 본 논문에서는 문서를 분류하는 신경망 모델의 성능을 향상시키기 위하여 문자 수준과 단어 수준의 모델을 혼합한 신경망 모델을 제안한다. 제안하는 모델은 각 단어에 대하여 문자 수준의 신경망 모델로 인코딩한 정보와 단어들의 정보를 저장하고 있는 단어 임베딩 행렬의 정보를 결합하여 각 단어에 대한 특징 벡터를 만든다. 추출된 단어들에 대한 특징 벡터를 바탕으로, 주의(attention) 메커니즘을 이용한 순환 신경망을 단어 수준과 문장 수준에 각각 적용하는 계층적 신경망 구조를 통해 문서를 분류한다. 제안한 모델에 대하여 실생활 데이터를 바탕으로 한 실험으로 효용성을 검증한다.

인공신경망 기계번역에서 디코딩 전략에 대한 연구 (Study on Decoding Strategies in Neural Machine Translation)

  • 서재형;박찬준;어수경;문현석;임희석
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.69-80
    • /
    • 2021
  • 딥러닝 모델을 활용한 인공신경망 기계번역 (Neural machine translation)이 주류 분야로 떠오르면서 최고의 성능을 위해 모델과 데이터 언어 쌍에 대한 많은 투자와 연구가 활발하게 진행되고 있다. 그러나, 최근 대부분의 인공신경망 기계번역 연구들은 번역 문장의 품질을 극대화하는 자연어 생성을 위한 디코딩 전략 (Decoding strategy)에 대해서는 미래 연구 과제로 남겨둔 채 다양한 실험과 구체적인 분석이 부족한 상황이다. 기계번역에서 디코딩 전략은 번역 문장을 생성하는 과정에서 탐색 경로를 최적화 하고, 모델 변경 및 데이터 확장 없이도 성능 개선이 가능하다. 본 논문은 시퀀스 투 시퀀스 (Sequence to Sequence) 모델을 활용한 신경망 기반의 기계번역에서 고전적인 그리디 디코딩 (Greedy decoding)부터 최신의 방법론인 Dynamic Beam Allocation (DBA)까지 비교 분석하여 디코딩 전략의 효과와 그 의의를 밝힌다.

순차 램 기반 누적 신경망을 이용한 수화 인식 (Sign Language recognition Using Sequential Ram-based Cumulative Neural Networks)

  • 이동형;강만모;김영기;이수동
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권5호
    • /
    • pp.205-211
    • /
    • 2009
  • 가중치가 없는 램 기반 신경망은 가중치를 재조정하는 기존 신경망에 비해 계산량 및 인식 시간이 적은 장점을 가지고 있다. 특히 연속적인 연관성을 갖는 제스처와 같은 행위 정보는 각각의 정보들이 시계열적 상관관계를 갖는다. 이와 같은 행위 정보를 인식하려면 일반적으로 많은 계산량과 처리 시간이 요구된다. 이런 문제점을 해결하기 위해 일반적으로 전처리 과정의 삽입 및 하드웨어 인터페이스 활용 등을 이용한다. 본 논문에서는 이와 같은 추가적인 방법 없이 순차 램 기반 누적 신경망으로 연속적인 행위 정보인 한글 복합어 수화 인식 시스템을 구현하였다. 제안된 모델의 성능을 검증하기 위하여 카메라로부터 입력받은 연속적인 복합어 수화 영상을 최소한의 이미지 처리인 경계선 검출만으로 수화 인식을 실험하였다. 경계선 검출 후 이진 영상을 전처리 과정 없이 제안된 순차 램 기반 누적 신경망 시스템으로 처리된 결과는 93%의 인식률을 얻었다.

  • PDF

위키피디아 링크 데이터를 이용한 Neural Network Model 기반 한국어 개체명 연결 (Neural Network Model for Named Entitiy Linking using Wikipedia Link Data)

  • 이영훈;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.163-166
    • /
    • 2018
  • 개체명 연결이란 주어진 문장에 출현한 단어를 위키피디아와 같은 지식 기반 상의 하나의 개체와 연결하여 특정 개체가 무엇인지 식별하여 모호성을 해결하는 작업이다. 본 연구에서는 위키피디아의 링크를 이용하여 개체 표현(Entity mention)과 학습 데이터, 지식 기반을 구축한다. 또한, Mention/Context 쌍의 표현과 Entity 표현의 코사인 유사도를 이용하여 Score를 구하고, 이를 통해 개체명 연결 문제를 랭킹 문제로 변환한다. 개체의 이름과 분류뿐만 아니라 개체의 설명, 개체 임베딩 등의 자질을 이용하여 모델을 확장하고 결과를 비교한다. 확장된 모델의 개체 링킹 성능은 89.63%의 정확도를 보였다.

  • PDF

Contextual Modeling in Context-Aware Conversation Systems

  • Quoc-Dai Luong Tran;Dinh-Hong Vu;Anh-Cuong Le;Ashwin Ittoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1396-1412
    • /
    • 2023
  • Conversation modeling is an important and challenging task in the field of natural language processing because it is a key component promoting the development of automated humanmachine conversation. Most recent research concerning conversation modeling focuses only on the current utterance (considered as the current question) to generate a response, and thus fails to capture the conversation's logic from its beginning. Some studies concatenate the current question with previous conversation sentences and use it as input for response generation. Another approach is to use an encoder to store all previous utterances. Each time a new question is encountered, the encoder is updated and used to generate the response. Our approach in this paper differs from previous studies in that we explicitly separate the encoding of the question from the encoding of its context. This results in different encoding models for the question and the context, capturing the specificity of each. In this way, we have access to the entire context when generating the response. To this end, we propose a deep neural network-based model, called the Context Model, to encode previous utterances' information and combine it with the current question. This approach satisfies the need for context information while keeping the different roles of the current question and its context separate while generating a response. We investigate two approaches for representing the context: Long short-term memory and Convolutional neural network. Experiments show that our Context Model outperforms a baseline model on both ConvAI2 Dataset and a collected dataset of conversational English.

Classification and prediction of the effects of nutritional intake on diabetes mellitus using artificial neural network sensitivity analysis: 7th Korea National Health and Nutrition Examination Survey

  • Kyungjin Chang;Songmin Yoo;Simyeol Lee
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1255-1266
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: This study aimed to predict the association between nutritional intake and diabetes mellitus (DM) by developing an artificial neural network (ANN) model for older adults. SUBJECTS/METHODS: Participants aged over 65 years from the 7th (2016-2018) Korea National Health and Nutrition Examination Survey were included. The diagnostic criteria of DM were set as output variables, while various nutritional intakes were set as input variables. An ANN model comprising one input layer with 16 nodes, one hidden layer with 12 nodes, and one output layer with one node was implemented in the MATLAB® programming language. A sensitivity analysis was conducted to determine the relative importance of the input variables in predicting the output. RESULTS: Our DM-predicting neural network model exhibited relatively high accuracy (81.3%) with 11 nutrient inputs, namely, thiamin, carbohydrates, potassium, energy, cholesterol, sugar, vitamin A, riboflavin, protein, vitamin C, and fat. CONCLUSIONS: In this study, the neural network sensitivity analysis method based on nutrient intake demonstrated a relatively accurate classification and prediction of DM in the older population.

다중 홉 질문 응답을 위한 쌍 선형 그래프 신경망 기반 추론 (Bilinear Graph Neural Network-Based Reasoning for Multi-Hop Question Answering)

  • 이상의;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권8호
    • /
    • pp.243-250
    • /
    • 2020
  • 지식 그래프 기반의 질문 응답 문제는 자연어 질문들에 대한 깊은 이해뿐만 아니라, 대규모 지식 그래프 상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 필요로 한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프 상의 각 개체 노드와 이웃 노드 간의 양방향 특징 전파를 허용할뿐만 아니라, 두 이웃 노드 쌍 간의 맥락 정보까지 활용할 수 있는, 표현력이 뛰어난 쌍 선형 그래프 신경망(BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스인 Freebase, 자연어 질문 응답을 위한 벤치마크 데이터 집합들인 WebQuestionsSP와 MetaQA를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.

Convolutional Neural Network (CNN) 기반의 단백질 간 상호 작용 추출 (Extraction of Protein-Protein Interactions based on Convolutional Neural Network (CNN))

  • 최성필
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권3호
    • /
    • pp.194-198
    • /
    • 2017
  • 본 논문에서는 학술 문헌에서 표현된 단백질 간 상호 작용(Protein-Protein Interaction) 정보를 자동으로 추출하기 위한 확장된 형태의 Convolutional Neural Network (CNN) 모델을 제안한다. 이 모델은 기존에 관계 추출(Relation Extraction)을 위해 고안된 단순 자질 기반의 CNN 모델을 확장하여 다양한 전역 자질들을 추가적으로 적용함으로써 성능을 개선할 수 있는 장점이 있다. PPI 추출 성능 평가를 위해서 많이 활용되고 있는 준거 평가 컬렉션인 AIMed를 이용한 실험에서 F-스코어 기준으로 78.0%를 나타내어 현재까지 도출된 세계 최고 성능에 비해 8.3% 높은 성능을 나타내었다. 추가적으로 CNN 모델이 복잡한 언어 처리를 통한 자질 추출 작업을 하지 않고도 단백질간 상호 작용 추출에 높은 성능을 나타냄을 보였다.

양방향 순환 신경망 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템 (A Fuzzy-AHP-based Movie Recommendation System with the Bidirectional Recurrent Neural Network Language Model)

  • 오재택;이상용
    • 디지털융복합연구
    • /
    • 제18권12호
    • /
    • pp.525-531
    • /
    • 2020
  • 다양한 정보가 대량으로 유통되는 IT 환경에서 사용자의 요구를 빠르게 파악하여 의사결정을 도와줄 수 있는 추천 시스템이 각광을 받고 있다. 그러나 현재 추천 시스템은 사용자의 취향이나 관심사가 바뀌었을 때 선호도가 즉시 시스템에 반영이 되지 않을 수가 있으며, 광고 유도로 인하여 사용자의 선호도와 무관한 아이템이 추천될 수가 있다는 문제점이 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 양방향 순환 신경망 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템을 제안하였다. 본 시스템은 사용자의 취향이나 관심사를 명확하고 객관적으로 반영하기 위해 Fuzzy-AHP를 적용하였다. 그리고 사용자가 선호하는 영화를 예측하기 위해 양방향 순환 신경망 언어 모델을 이용하여 실시간으로 수집되는 영화 관련 데이터를 분석하였다. 본 시스템의 성능을 평가하기 위해 그리드 서치를 이용하여 전체 단어 집합의 크기에 대한 학습 모델의 적합성을 확인하였다. 그 결과 본 시스템의 학습 모델은 전체 단어 집합의 크기에 따른 평균 교차 검증 지수가 97.9%로 적합하다는 것을 확인할 수 있었다. 그리고 본 모델은 네이버의 영화 평점 대비 평균 제곱근 오차가 0.66, LSTM 언어 모델은 평균 제곱근 오차가 0.805으로, 본 시스템의 영화 평점 예측성이 더 우수함을 알 수 있었다.