• Title/Summary/Keyword: Neural Embedding Model

Search Result 79, Processing Time 0.02 seconds

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

Knowledge Recommendation Based on Dual Channel Hypergraph Convolution

  • Yue Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2903-2923
    • /
    • 2023
  • Knowledge recommendation is a type of recommendation system that recommends knowledge content to users in order to satisfy their needs. Although using graph neural networks to extract data features is an effective method for solving the recommendation problem, there is information loss when modeling real-world problems because an edge in a graph structure can only be associated with two nodes. Because one super-edge in the hypergraph structure can be connected with several nodes and the effectiveness of knowledge graph for knowledge expression, a dual-channel hypergraph convolutional neural network model (DCHC) based on hypergraph structure and knowledge graph is proposed. The model divides user data and knowledge data into user subhypergraph and knowledge subhypergraph, respectively, and extracts user data features by dual-channel hypergraph convolution and knowledge data features by combining with knowledge graph technology, and finally generates recommendation results based on the obtained user embedding and knowledge embedding. The performance of DCHC model is higher than the comparative model under AUC and F1 evaluation indicators, comparative experiments with the baseline also demonstrate the validity of DCHC model.

Knowledge Embedding Method for Implementing a Generative Question-Answering Chat System (생성 기반 질의응답 채팅 시스템 구현을 위한 지식 임베딩 방법)

  • Kim, Sihyung;Lee, Hyeon-gu;Kim, Harksoo
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.134-140
    • /
    • 2018
  • A chat system is a computer program that understands user's miscellaneous utterances and generates appropriate responses. Sometimes a chat system needs to answer users' simple information-seeking questions. However, previous generative chat systems do not consider how to embed knowledge entities (i.e., subjects and objects in triple knowledge), essential elements for question-answering. The previous chat models have a disadvantage that they generate same responses although knowledge entities in users' utterances are changed. To alleviate this problem, we propose a knowledge entity embedding method for improving question-answering accuracies of a generative chat system. The proposed method uses a Siamese recurrent neural network for embedding knowledge entities and their synonyms. For experiments, we implemented a sequence-to-sequence model in which subjects and predicates are encoded and objects are decoded. The proposed embedding method showed 12.48% higher accuracies than the conventional embedding method based on a convolutional neural network.

Multimodal Context Embedding for Scene Graph Generation

  • Jung, Gayoung;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1250-1260
    • /
    • 2020
  • This study proposes a novel deep neural network model that can accurately detect objects and their relationships in an image and represent them as a scene graph. The proposed model utilizes several multimodal features, including linguistic features and visual context features, to accurately detect objects and relationships. In addition, in the proposed model, context features are embedded using graph neural networks to depict the dependencies between two related objects in the context feature vector. This study demonstrates the effectiveness of the proposed model through comparative experiments using the Visual Genome benchmark dataset.

Antibiotics-Resistant Bacteria Infection Prediction Based on Deep Learning (딥러닝 기반 항생제 내성균 감염 예측)

  • Oh, Sung-Woo;Lee, Hankil;Shin, Ji-Yeon;Lee, Jung-Hoon
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.105-120
    • /
    • 2019
  • The World Health Organization (WHO) and other government agencies aroundthe world have warned against antibiotic-resistant bacteria due to abuse of antibiotics and are strengthening their care and monitoring to prevent infection. However, it is highly necessary to develop an expeditious and accurate prediction and estimating method for preemptive measures. Because it takes several days to cultivate the infecting bacteria to identify the infection, quarantine and contact are not effective to prevent spread of infection. In this study, the disease diagnosis and antibiotic prescriptions included in Electronic Health Records were embedded through neural embedding model and matrix factorization, and deep learning based classification predictive model was proposed. The f1-score of the deep learning model increased from 0.525 to 0.617when embedding information on disease and antibiotics, which are the main causes of antibiotic resistance, added to the patient's basic information and hospital use information. And deep learning model outperformed the traditional machine hospital use information. And deep learning model outperformed the traditional machine learning models.As a result of analyzing the characteristics of antibiotic resistant patients, resistant patients were more likely to use antibiotics in J01 than nonresistant patients who were diagnosed with the same diseases and were prescribed 6.3 times more than DDD.

Improving Embedding Model for Triple Knowledge Graph Using Neighborliness Vector (인접성 벡터를 이용한 트리플 지식 그래프의 임베딩 모델 개선)

  • Cho, Sae-rom;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.67-80
    • /
    • 2021
  • The node embedding technique for learning graph representation plays an important role in obtaining good quality results in graph mining. Until now, representative node embedding techniques have been studied for homogeneous graphs, and thus it is difficult to learn knowledge graphs with unique meanings for each edge. To resolve this problem, the conventional Triple2Vec technique builds an embedding model by learning a triple graph having a node pair and an edge of the knowledge graph as one node. However, the Triple2 Vec embedding model has limitations in improving performance because it calculates the relationship between triple nodes as a simple measure. Therefore, this paper proposes a feature extraction technique based on a graph convolutional neural network to improve the Triple2Vec embedding model. The proposed method extracts the neighborliness vector of the triple graph and learns the relationship between neighboring nodes for each node in the triple graph. We proves that the embedding model applying the proposed method is superior to the existing Triple2Vec model through category classification experiments using DBLP, DBpedia, and IMDB datasets.

CR-M-SpanBERT: Multiple embedding-based DNN coreference resolution using self-attention SpanBERT

  • Joon-young Jung
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.35-47
    • /
    • 2024
  • This study introduces CR-M-SpanBERT, a coreference resolution (CR) model that utilizes multiple embedding-based span bidirectional encoder representations from transformers, for antecedent recognition in natural language (NL) text. Information extraction studies aimed to extract knowledge from NL text autonomously and cost-effectively. However, the extracted information may not represent knowledge accurately owing to the presence of ambiguous entities. Therefore, we propose a CR model that identifies mentions referring to the same entity in NL text. In the case of CR, it is necessary to understand both the syntax and semantics of the NL text simultaneously. Therefore, multiple embeddings are generated for CR, which can include syntactic and semantic information for each word. We evaluate the effectiveness of CR-M-SpanBERT by comparing it to a model that uses SpanBERT as the language model in CR studies. The results demonstrate that our proposed deep neural network model achieves high-recognition accuracy for extracting antecedents from NL text. Additionally, it requires fewer epochs to achieve an average F1 accuracy greater than 75% compared with the conventional SpanBERT approach.

KG_VCR: A Visual Commonsense Reasoning Model Using Knowledge Graph (KG_VCR: 지식 그래프를 이용하는 영상 기반 상식 추론 모델)

  • Lee, JaeYun;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.3
    • /
    • pp.91-100
    • /
    • 2020
  • Unlike the existing Visual Question Answering(VQA) problems, the new Visual Commonsense Reasoning(VCR) problems require deep common sense reasoning for answering questions: recognizing specific relationship between two objects in the image, presenting the rationale of the answer. In this paper, we propose a novel deep neural network model, KG_VCR, for VCR problems. In addition to make use of visual relations and contextual information between objects extracted from input data (images, natural language questions, and response lists), the KG_VCR also utilizes commonsense knowledge embedding extracted from an external knowledge base called ConceptNet. Specifically the proposed model employs a Graph Convolutional Neural Network(GCN) module to obtain commonsense knowledge embedding from the retrieved ConceptNet knowledge graph. By conducting a series of experiments with the VCR benchmark dataset, we show that the proposed KG_VCR model outperforms both the state of the art(SOTA) VQA model and the R2C VCR model.

E-commerce data based Sentiment Analysis Model Implementation using Natural Language Processing Model (자연어처리 모델을 이용한 이커머스 데이터 기반 감성 분석 모델 구축)

  • Choi, Jun-Young;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.33-39
    • /
    • 2020
  • In the field of Natural Language Processing, Various research such as Translation, POS Tagging, Q&A, and Sentiment Analysis are globally being carried out. Sentiment Analysis shows high classification performance for English single-domain datasets by pretrained sentence embedding models. In this thesis, the classification performance is compared by Korean E-commerce online dataset with various domain attributes and 6 Neural-Net models are built as BOW (Bag Of Word), LSTM[1], Attention, CNN[2], ELMo[3], and BERT(KoBERT)[4]. It has been confirmed that the performance of pretrained sentence embedding models are higher than word embedding models. In addition, practical Neural-Net model composition is proposed after comparing classification performance on dataset with 17 categories. Furthermore, the way of compressing sentence embedding model is mentioned as future work, considering inference time against model capacity on real-time service.

Learning Deep Representation by Increasing ConvNets Depth for Few Shot Learning

  • Fabian, H.S. Tan;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.75-81
    • /
    • 2019
  • Though recent advancement of deep learning methods have provided satisfactory results from large data domain, somehow yield poor performance on few-shot classification tasks. In order to train a model with strong performance, i.e. deep convolutional neural network, it depends heavily on huge dataset and the labeled classes of the dataset can be extremely humongous. The cost of human annotation and scarcity of the data among the classes have drastically limited the capability of current image classification model. On the contrary, humans are excellent in terms of learning or recognizing new unseen classes with merely small set of labeled examples. Few-shot learning aims to train a classification model with limited labeled samples to recognize new classes that have neverseen during training process. In this paper, we increase the backbone depth of the embedding network in orderto learn the variation between the intra-class. By increasing the network depth of the embedding module, we are able to achieve competitive performance due to the minimized intra-class variation.