• Title/Summary/Keyword: Neural Crest

Search Result 65, Processing Time 0.026 seconds

The Suppression Effects of Fat Mass and Obesity Associated Gene on the Hair Follicle-Derived Neural Crest Stem Cells Differentiating into Melanocyte by N6-Methyladenosine Modifying Microphthalmia-Associated Transcription Factor

  • Zhiwei Shang;Haixia Feng;Liye Xia
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • Background and Objectives: Melanocyte (MC), derived from neural crest stem cell (NCSC), are involved in the production of melanin. The mechanism by which NCSC differentiates to MC remains unclear. N6-methyladenosine (m6A) modification was applied to discuss the potential mechanism. Methods and Results: NCSCs were isolated from hair follicles of rats, and were obtained for differentiation. Cell viability, tyrosinase secretion and activity, and transcription factors were combined to evaluated the MC differentiation. RT-qPCR was applied to determine mRNA levels, and western blot were used for protein expression detection. Total m6A level was measured using methylated RNA immunoprecipitation (MeRIP) assay, and RNA immunoprecipitation was used to access the protein binding relationship. In current work, NCSCs were successfully differentiated into MCs. Fat mass and obesity associated gene (FTO) was aberrant downregulated in MCs, and elevated FTO suppressed the differentiation progress of NCSCs into MCs. Furthermore, microphthalmia-associated transcription factor (Mitf), a key gene involved in MC synthesis, was enriched by FTO in a m6A modification manner and degraded by FTO. Meanwhile, the suppression functions of FTO in the differentiation of NCSCs into MCs were reversed by elevated Mitf. Conclusions: In short, FTO suppressed the differentiating ability of hair follicle-derived NCSCs into MCs by m6A modifying Mitf.

Assessment of the crest cracks of the Pubugou rockfill dam based on parameters back analysis

  • Zhou, Wei;Li, Shao-Lin;Ma, Gang;Chang, Xiao-Lin;Cheng, Yong-Gang;Ma, Xing
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.571-585
    • /
    • 2016
  • The crest of the Pubugou central core rockfill dam (CCRD) cracked in the first and second impounding periods. To evaluate the safety of the Pubugou CCRD, an inversion analysis of the constitutive model parameters for rockfill materials is performed based on the in situ deformation monitoring data. The aim of this work is to truly reflect the deformation state of the Pubugou CCRD and determine the causes of the dam crest cracks. A novel real-coded genetic algorithm based upon the differences in gene fragments (DGFX) is proposed. It is used in combination with the radial based function neural network (RBFNN) to perform the parameters back analysis. The simulated settlements show good agreements with the monitoring data, illustrating that the back analysis is reasonable and accurate. Furthermore, the deformation gradient of the dam crest has been analysed. The dam crest has a great possibility of cracking due to the uncoordinated deformation, which agrees well with the field investigation. The deformation gradient decreases to the value lower than the critical one and reaches a stable state after the second full reservoir.

RNF152 negatively regulates Wnt/β-catenin signaling in Xenopus embryos

  • Yoon, Gang-Ho;Kim, Kyuhee;Park, Dong-Seok;Choi, Sun-Cheol
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.232-237
    • /
    • 2022
  • The Wnt/β-catenin signaling plays crucial roles in early development, tissue homeostasis, stem cells, and cancers. Here, we show that RNF152, an E3 ligase localized to lysosomes, acts as a negative regulator of the Wnt/β-catenin pathway during Xenopus early embryogenesis. Overexpression of wild-type (WT) RNF152 inhibited XWnt8-induced stabilization of β-catenin, ectopic expression of target genes, and activity of a Wnt-responsive promoter. Likewise, an E3 ligase-defective RNF152 had repressive effects on the Wnt-dependent gene responses but not its truncation mutant lacking the transmembrane domain. Conversely, knockdown of RNF152 further enhanced the transcriptional responses induced by XWnt8. RNF152 morphants exhibited defects in craniofacial structures and pigmentation. In line with this, the gain-of-RNF152 function interfered with the expression of neural crest (NC) markers, whereas its depletion up-regulated NC formation in the early embryo. Mechanistically, RNF152 inhibits the polymerization of Dishevelled, which is key to Wnt signaling, in an E3 ligase-independent manner. Together, these results suggest that RNF152 controls negatively Wnt/β-catenin signaling to fine-tune its activity for NC formation in Xenopus embryo.

Involvement of a LiCl-Induced Phosphoprotein in Pigmentation of the Embryonic Zebrafish (Danio rerio) (LiCl에 의해 유도되는 phosphoprotein이 embryonic zebrafish (Danio rerio)의 pigmentation에 미치는 영향)

  • Jin, Eun-Jung;Thibaudeau, Giselle
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1219-1224
    • /
    • 2008
  • The embryonic zebrafish (Danio rerio) is rapidly becoming an important model organism for studies of early events in vertebrate development. Neural crest-derived pigment cell precursors of the embryonic zebrafish give rise to melanophores, xanthophores, and/or iridophores. Cell-signaling mechanisms related to the development of pigmentation and pigment pattern formation remain obscure. In this study, zebrafish embryos were treated with various signaling-related molecules - LiCl (an inositol-phosphatase inhibitor), forskolin (a protein kinase-A activator), a combination of LiCl/forskolin, and LiCl/heparin (an IP3 inhibitor) in order to identify the mechanisms involved in pigmentation. LiCl treatment resulted in ultrastructural and morphological alterations of melanophores. To identify the possible proteins responsible for this ultrastructural and morphological change, phosphorylation patterns in vitro and in vivo were analyzed. LiCl and LiCl/forskolin treatment elicited dramatic increases in the phosphorylation of a 55-kDa protein which was inhibited by heparin treatment. LiCl treatment also induced phosphorylation of a 55-kDa protein in melanophores purified from adult zebrafish. Collectively these results suggest that a LiCl-induced 55-kDa phosphoprotein plays a role in melanophore morphology and ultrastructure and ultimately effects gross pigmentation.

Immunohistochemistry: sole tool in diagnosing a rare case of primary vaginal amelanotic melanoma

  • Garg, Rashi;Gupta, Neelam
    • Obstetrics & gynecology science
    • /
    • v.61 no.6
    • /
    • pp.698-701
    • /
    • 2018
  • We report a rare case of vaginal amelanotic melanoma. Malignant melanomas are cutaneous and extracutaneous tumors that arise from embryological remnants of neural crest cells/melanocytes. Amelanotic melanomas at such rare locations can be misdiagnosed both clinically and radiologically. Therefore, histopathological examination and immunohistochemistry are mandatory for the diagnosis of these tumors. We diagnosed this case using histopathology and confirmed the diagnosis based on the presence of immunohistochemical markers human melanoma black 45 (HMB45) and S-100.

Slope stability analysis using black widow optimization hybridized with artificial neural network

  • Hu, Huanlong;Gor, Mesut;Moayedi, Hossein;Osouli, Abdolreza;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.523-533
    • /
    • 2022
  • A novel metaheuristic search method, namely black widow optimization (BWO) is employed to increase the accuracy of slope stability analysis. The BWO is a recently-developed optimizer that supervises the training of an artificial neural network (ANN) for predicting the factor of safety (FOS) of a single-layer cohesive soil slope. The designed slope bears a loaded foundation in different distances from the crest. A sensitivity analysis is conducted based on the number of active individuals in the BWO algorithm, and it was shown that the best performance is acquired for the population size of 40. Evaluation of the results revealed that the capability of the ANN was significantly enhanced by applying the BWO. In this sense, the learning root mean square error fell down by 23.34%. Also, the correlation between the testing data rose from 0.9573 to 0.9737. Therefore, the postposed BWO-ANN can be promisingly used for the early prediction of FOS in real-world projects.

Two person Interaction Recognition Based on Effective Hybrid Learning

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Kim, Jin Woo;Bashar, Md Rezaul;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.751-770
    • /
    • 2019
  • Action recognition is an essential task in computer vision due to the variety of prospective applications, such as security surveillance, machine learning, and human-computer interaction. The availability of more video data than ever before and the lofty performance of deep convolutional neural networks also make it essential for action recognition in video. Unfortunately, limited crafted video features and the scarcity of benchmark datasets make it challenging to address the multi-person action recognition task in video data. In this work, we propose a deep convolutional neural network-based Effective Hybrid Learning (EHL) framework for two-person interaction classification in video data. Our approach exploits a pre-trained network model (the VGG16 from the University of Oxford Visual Geometry Group) and extends the Faster R-CNN (region-based convolutional neural network a state-of-the-art detector for image classification). We broaden a semi-supervised learning method combined with an active learning method to improve overall performance. Numerous types of two-person interactions exist in the real world, which makes this a challenging task. In our experiment, we consider a limited number of actions, such as hugging, fighting, linking arms, talking, and kidnapping in two environment such simple and complex. We show that our trained model with an active semi-supervised learning architecture gradually improves the performance. In a simple environment using an Intelligent Technology Laboratory (ITLab) dataset from Inha University, performance increased to 95.6% accuracy, and in a complex environment, performance reached 81% accuracy. Our method reduces data-labeling time, compared to supervised learning methods, for the ITLab dataset. We also conduct extensive experiment on Human Action Recognition benchmarks such as UT-Interaction dataset, HMDB51 dataset and obtain better performance than state-of-the-art approaches.

Functional characterization of a minimal sequence essential for the expression of human TLX2 gene

  • Borghini, Silvia;Bachetti, Tiziana;Fava, Monica;Duca, Marco Di;Ravazzolo, Roberto;Ceccherini, Isabella
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.788-793
    • /
    • 2009
  • TLX2 is an orphan homeodomain transcription factor whose expression is mainly associated with tissues derived from neural crest cells. Recently, we have demonstrated that PHOX2A and PHOX2B are able to enhance the neural cell-type specific expression of human TLX2 by binding distally the 5' -flanking region. In the present work, to deepen into the TLX2 transcription regulation, we have focused on the proximal 5'-flanking region of the gene, mapping the transcription start site and identifying a minimal promoter necessary and sufficient for the basal transcription in cell lines from different origin. Site-directed mutagenesis has allowed to demonstrate that the integrity of this sequence is crucial for gene expression, while electrophoretic mobility shift assays and chromatin immunoprecipitation experiments have revealed that such an activity is dependent on the binding of a PBX factor. Consistent with these findings, such a basal promoter activity has resulted to be enhanced by the previously reported PHOX2-responding sequence.