• Title/Summary/Keyword: Networked embedded system

Search Result 42, Processing Time 0.026 seconds

Intelligent Lighting Control using Wireless Sensor Networks for Media Production

  • Park, Hee-Min;Burke, Jeff;Srivastava, Mani B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.423-443
    • /
    • 2009
  • We present the design and implementation of a unique sensing and actuation application -- the Illuminator: a sensor network-based intelligent light control system for entertainment and media production. Unlike most sensor network applications, which focus on sensing alone, a distinctive aspect of the Illuminator is that it closes the loop from light sensing to lighting control. We describe the Illuminator's design requirements, system architecture, algorithms, implementation and experimental results. The system uses the Illumimote, a multi-modal and high fidelity light sensor module well-suited for wireless sensor networks, to satisfy the high-performance light sensing requirements of entertainment and media production applications. The Illuminator system is a toolset to characterize the illumination profile of a deployed set of fixed position lights, generate desired lighting effects for moving targets (actors, scenic elements, etc.) based on user constraints expressed in a formal language, and to assist in the set up of lights to achieve the same illumination profile in multiple venues. After characterizing deployed lights, the Illuminator computes optimal light settings at run-time to achieve a user-specified actuation profile, using an optimization framework based on a genetic algorithm. Uniquely, it can use deployed sensors to incorporate changing ambient lighting conditions and moving targets into actuation. Experimental results demonstrate that the Illuminator handles various high-level user requirements and generates an optimal light actuation profile. These results suggest that the Illuminator system supports entertainment and media production applications.

Real-Time Panorama Video Generation System using Multiple Networked Cameras (다중 네트워크 카메라 기반 실시간 파노라마 동영상 생성 시스템)

  • Choi, KyungYoon;Jun, KyungKoo
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.990-997
    • /
    • 2015
  • Panoramic image creation has been extensively studied. Existing methods use customized hardware, or apply post-processing methods to seamlessly stitch images. These result in an increase in either cost or complexity. In addition, images can only be stitched under certain conditions such as existence of characteristic points of the images. This paper proposes a low cost and easy-to-use system that produces realtime panoramic video. We use an off-the-shelf embedded platform to capture multiple images, and these are then transmitted to a server in a compressed format to be merged into a single panoramic video. Finally, we analyze the performance of the implemented system by measuring time to successfully create the panoramic image.

A versatile software architecture for civil structure monitoring with wireless sensor networks

  • Flouri, Kallirroi;Saukh, Olga;Sauter, Robert;Jalsan, Khash Erdene;Bischoff, Reinhard;Meyer, Jonas;Feltrin, Glauco
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.209-228
    • /
    • 2012
  • Structural health monitoring with wireless sensor networks has received much attention in recent years due to the ease of sensor installation and low deployment and maintenance costs. However, sensor network technology needs to solve numerous challenges in order to substitute conventional systems: large amounts of data, remote configuration of measurement parameters, on-site calibration of sensors and robust networking functionality for long-term deployments. We present a structural health monitoring network that addresses these challenges and is used in several deployments for monitoring of bridges and buildings. Our system supports a diverse set of sensors, a library of highly optimized processing algorithms and a lightweight solution to support a wide range of network runtime configurations. This allows flexible partitioning of the application between the sensor network and the backend software. We present an analysis of this partitioning and evaluate the performance of our system in three experimental network deployments on civil structures.

Implementation of IEEE1588 for Clock Synchronization (CAN 네트워크의 시간동기를 위한 IEEE1588 구현)

  • Park, Sung-Won;Kim, In-Sung;Lee, Dongik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.2
    • /
    • pp.123-132
    • /
    • 2014
  • In this paper, an IEEE1588 based clock synchronization technique for CAN (Controller Area Network) is presented. Clock synchronization plays a key role to the success of a networked embedded system. Recently, the IEEE1588 algorithm making use of dedicated chipsets has been widely adopted for the synchronization of various industrial applications using Ethernet. However, there is no chipset available for CAN. This paper presents the implementation of IEEE1588 for CAN, which is implemented using only software and CAN packets without any dedicated chipset. The proposed approach is verified by the comparison between the estimated synchronization precision with a simple model and the measured precision with experimental setup.

Enhancing Cyber-Physical Systems Security: A Comprehensive SRE Approach for Robust CPS Methodology

  • Shafiq ur Rehman
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.40-52
    • /
    • 2024
  • Cyber-Physical Systems (CPS) are introduced as complex, interconnected systems that combine physical components with computational elements and networking capabilities. They bridge the gap between the physical world and the digital world, enabling the monitoring and control of physical processes through embedded computing systems and networked communication. These systems introduce several security challenges. These challenges, if not addressed, can lead to vulnerabilities that may result in substantial losses. Therefore, it is crucial to thoroughly examine and address the security concerns associated with CPS to guarantee the safe and reliable operation of these systems. To handle these security concerns, different existing security requirements methods are considered but they were unable to produce required results because they were originally developed for software systems not for CPS and they are obsolete methods for CPS. In this paper, a Security Requirements Engineering Methodology for CPS (CPS-SREM) is proposed. A comparison of state-of-the-art methods (UMLSec, CLASP, SQUARE, SREP) and the proposed method is done and it has demonstrated that the proposed method performs better than existing SRE methods and enabling experts to uncover a broader spectrum of security requirements specific to CPS. Conclusion: The proposed method is also validated using a case study of the healthcare system and the results are promising. The proposed model will provide substantial advantages to both practitioners and researcher, assisting them in identifying the security requirements for CPS in Industry 4.0.

AMI System Using Smart Electricity Meter Embedded with Home Concentrate Unit (세대집중화장치를 포함하는 스마트 전력량계를 이용한 AMI 시스템)

  • Park, Jae-Sam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.537-546
    • /
    • 2019
  • In this paper, a system that integrates a home concentrate unit(HCU) in a smart electricity meter to collects water, gas, hot water, and heating usage required for AMI has been proposed. The collected data could be transmitted to the in house display(IHD) and server to provide a more economical AMI system. The developed system is less expensive in the network configuration than the existing system, which could reduce the operating cost, and be easy to install. By applying the developed system, the usage of electricity, water, gas, hot water and heating could be measured and these make it easier to apply AMI system. The main contents of the development are the smart electricity meter and embedding of HCU into the smart electricity meter, and transferring these data to IHD and server to structure the AMI system. The each developed unit has been networked to structure the AMI system to perform the actual meter reading operation and show the result.

A Development of Remote Medical Treatment System for Stroke Recovery using ZigBee-based Wireless Brain Stimulator and Internet (ZigBee 기반의 무선 뇌 자극기와 네트워크를 이용한 원격 뇌졸중 회복 시스템의 개발)

  • Kim, G.H.;Ryu, M.H.;Kim, J.J.;Kim, N.G.;Yang, Y.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.514-517
    • /
    • 2008
  • Ubiquitous healthcare (U-healthcare) system is one of potential applications of embedded system. Conventional U-healthcare systems are used in health monitoring or chronic disease care based on measuring and transmission of various vital signs. However, future U-healthcare system can be of benefit to more people such as stroke patients which have limited activity by providing them proper medical care as well as continuous monitoring. Recently, an electric brain stimulation treatments have been found to be a better way compared to conventional ones and many are interested in using the method toward the treatment of stroke. In this study, we proposed a remote medical treatment system using ZigBee-based wireless electric brain stimulator that can help them to get a treatment without visiting their doctors. The developed remote medical treatment system connects the doctors to the brain stimulator implanted in the patients via the internet and ZigBee communication built in the brain stimulator. Also, the system receive personal information of the connected patients and cumulate the total records of electric stimulation therapy in a database. Doctors can easily access the information for better treatment planning with the help of graphical visualization tools and management software. The developed remote medical treatment system can extend their coverage to outdoors being networked with hand-held devices through ZigBee.

Design and Implementation of The Capability Token based Access Control System in the Internet of Things (IoT에서 Capability 토큰 기반 접근제어 시스템 설계 및 구현)

  • Lee, Bum-Ki;Kim, Mi-Sun;Seo, Jae-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.439-448
    • /
    • 2015
  • IoT (Internet of Things) propels current networked communities into a advanced hyper-connected society/world where uniquely identifiable embedded computing devices are associated with the existing internet infrastructure. Therefore, the IoT services go beyond mere M2M (Machine-to-Machine communications) and should be able to empower users with more flexible communication capabilities over protocols, domains, and applications. In addition, The access control in IoT need a differentiated methods from the traditional access control to increase a security and dependability. In this paper, we describe implementation and design of the capability token based system for secure access control in IoT environments. In the proposed system, Authorities are symbolized into concepts of the capability tokens, and the access control systems manage the tokens, creation, (re)delegation and revocation. The proposed system is expected to decrease the process time of access control by using capability tokens.

Design and Implementation of IoT Chatting Service Based on Indoor Location (실내 위치기반 사물인터넷 채팅 서비스 설계 및 구현)

  • Lee, Sunghee;Jeong, Seol Young;Kang, Soon Ju;Lee, Woo Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.920-929
    • /
    • 2014
  • Recently, embedded system which demand is explosively increasing in the fields of communication, traffic, medical and industry facilities, expands to cyber physical system (CPS) which monitors and controls the networked embedded systems. In addition, internet of things(IoT) technology using wearable devices such as Google Glass, Samsung Galaxy Gear and Sony Smart Watch are gaining attention. In this situation, Samsung Smart Home and LG Home Chat are released one after another. However, since these services can be available only between smart phones and home appliances, there is a disadvantage that information cannot be passed to other terminals without commercial global messaging server. In this paper, to solve above issues, we propose the structure of an indoor location network based on unit space, which prevents the information of the devices or each individual person from leaking to outside and can selectively communicate to all existent terminals in the network using IoT chatting. Also, it is possible to control general devices and prevent external leakage of private information.

Maximizing Concurrency and Analyzable Timing Behavior in Component-Oriented Real-Time Distributed Computing Application Systems

  • Kim, Kwang-Hee Kane;Colmenares, Juan A.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.1
    • /
    • pp.56-73
    • /
    • 2007
  • Demands have been growing in safety-critical application fields for producing networked real-time embedded computing (NREC) systems together with acceptable assurances of tight service time bounds (STBs). Here a service time can be defined as the amount of time that the NREC system could take in accepting a request, executing an appropriate service method, and returning a valid result. Enabling systematic composition of large-scale NREC systems with STB certifications has been recognized as a highly desirable goal by the research community for many years. An appealing approach for pursuing such a goal is to establish a hard-real-time (HRT) component model that contains its own STB as an integral part. The TMO (Time-Triggered Message-Triggered Object) programming scheme is one HRT distributed computing (DC) component model established by the first co-author and his collaborators over the past 15 years. The TMO programming scheme has been intended to be an advanced high-level RT DC programming scheme that enables development of NREC systems and validation of tight STBs of such systems with efforts far smaller than those required when any existing lower-level RT DC programming scheme is used. An additional goal is to enable maximum exploitation of concurrency without damaging any major structuring and execution approaches adopted for meeting the first two goals. A number of previously untried program structuring approaches and execution rules were adopted from the early development stage of the TMO scheme. This paper presents new concrete justifications for those approaches and rules, and also discusses new extensions of the TMO scheme intended to enable further exploitation of concurrency in NREC system design and programming.