• Title/Summary/Keyword: Network-based industrial control system

Search Result 268, Processing Time 0.018 seconds

Design and Implementation of Rate-Based Traffic Controller for Performance Improvement of FA-Networks Employing LonWorks (LonWorks를 이용한 공장자동화용 네트웍의 성능향상을 위한 전송률기반 트래픽제어기의 설계와 구현)

  • Kim, Byoung-Hee;Cho, Kwang-Hyun;Park, Kyoung-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.313-319
    • /
    • 2000
  • As the interest of flexible manufacturing systems and computer integrated manufacturing systems increase, the distribution of centralized control systems using industrial control networks is getting more attention. In this paper, we investigate the rate-based traffic control of industrial control networks to improve the performance regarding the throughput, fairness, and error rates. Especially, we consider the protocol of Lon-$Works^{(TM)}$ which consists of all OSI 7-layers and supports various communication media at a low cost. Basically, the proposed rate-based traffic control system is closed loop by utilizing the feedback channel errors, which shows improved performance when compared with other industrial control networks commonly operated in open loop. To this end, an additional network node called monitoring node is introduced to check the channel status without increasing the channel load. The Proposed control loop is in effect whenever the feedback channel error becomes greater than an admittable value. We demonstrate the improved performance of the controlled network system in view of throughput and fairness measures by implementing the lab-scale network system based on LonWorks and through the experimentation upon it.

  • PDF

High-Precision Contour Control by Gaussian Neural Network Controller for Industrial Articulated Robot Arm with Uncertainties

  • Zhang, Tao;Nakamura, Masatoshi
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.272-282
    • /
    • 2001
  • Uncertainties are the main reasons of deterioration of contour control of industrial articulated robot arm. In this paper, a high-precision contour control method was proposed to overcome some main uncertainties, such as torque saturation, system delay dynamics, interference between robot links, friction, and so on. Firstly, each considered factor of uncertainties was introduced briefly. Then proper realizable objective trajectory generation was presented to avoid torque saturation from objective trajectory. According to the model of industrial articulated robot arm, construction of Gaussian neural network controller with considering system delay dynamic, interference between robot links and friction was explained in detail. Finally, through the experiment and simulation, the effectiveness of proposed method was verified. Furthermore, based on the results it was shown that the Gaussian neural network controller can be also adapted for the various kinds of friction and high-speed motion of industrial articulated robot arm.

  • PDF

Anomaly Detection Using Visualization-based Network Forensics (비정상행위 탐지를 위한 시각화 기반 네트워크 포렌식)

  • Jo, Woo-yeon;Kim, Myung-jong;Park, Keun-ho;Hong, Man-pyo;Kwak, Jin;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • Many security threats are occurring around the world due to the characteristics of industrial control systems that can cause serious damage in the event of a security incident including major national infrastructure. Therefore, the industrial control system network traffic should be analyzed so that it can identify the attack in advance or perform incident response after the accident. In this paper, we research the visualization technique as network forensics to enable reasonable suspicion of all possible attacks on DNP3 control system protocol, and define normal action based rules and derive visualization requirements. As a result, we developed a visualization tool that can detect sudden network traffic changes such as DDoS and attacks that contain anormal behavior from captured packet files on industrial control system network. The suspicious behavior in the industrial control system network can be found using visualization tool with Digital Bond packet.

Real-Time Centralized Soft Motion Control System for High Speed and Precision Robot Control (고속 정밀 로봇 제어를 위한 실시간 중앙 집중식 소프트 모션 제어 시스템)

  • Jung, Il-Kyun;Kim, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.295-301
    • /
    • 2013
  • In this paper, we propose a real-time centralized soft motion control system for high speed and precision robot control. The system engages EtherCAT as high speed industrial motion network to enable force based motion control in real-time and is composed of software-based master controller with PC and slave interface modules. Hard real-time control capacity is essential for high speed and precision robot control. To implement soft based real time control, The soft based master controller is designed using a real time kernel (RTX) and EtherCAT network, and servo processes are located in the master controller for centralized motion control. In the proposed system, slave interface modules just collect and transfer all sensor information of robot to the master controller via the EtherCAT network. It is proven by experimental results that the proposed soft motion control system has real time controllability enough to apply for various robot control systems.

Implementation of a Fieldbus System Based on EIA-709.1 Control Network Protocol (EIA-709.1 Control Network Protocol을 이용한 필드버스 시스템 구현)

  • Park, Byoung-Wook;Kim, Jung-Sub;Lee, Chang-Hee;Kim, Jong-Bae;Lim, Kye-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.594-601
    • /
    • 2000
  • EIA-709.1 Control Network Protocol is the basic protocol of LonWorks systems that is emerg-ing as a fieldbus device. In this paper the protocol is implemented by using VHDL with FPGA and C program on an Intel 8051 processor. The protocol from the physical layer to the network layer of EIA-709.1 is im-plemented in a hardware level,. So it decreases the load of the CPU for implementing the protocol. We verify the commercial feasibility of the hardware through the communication test with Neuron Chip. based on EIA-709.1 protocol which is used in industrial fields. The developed protocol based on FPGA becomes one of IP can be applicable to various industrial field because it is implemented by VHDL.

  • PDF

Design of Intelligent Material Quality Control System based on Pattern Analysis using Artificial Neural Network (인공 신경망의 패턴분석에 근거한 지능적 부품품질 관리시스템의 설계)

  • 이장희;유성진;박상찬
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.4
    • /
    • pp.38-53
    • /
    • 2001
  • In resolving industrial quality control problems, a vector of multiple quality characteristic variables is involved rather than a single variable. However, it is not guaranteed that a multivariate control chart based on statistical methods can monitor abnormal signal in case that small changes of relationship between each variables causes abnormal production process. Hence a quality control system for real-time monitoring of the multi-dimensional quality characteristic vector under a multivariate normal process is needed to enhance tile production system quality performance. A pattern analysis approach based on self-organizing map (SOM), an unsupervised learning technique of neural network, is applied to the design of such a quality control system. In this study we present a new material quality control system based on pattern analysis approach and illustrate the effectiveness of proposed system using actual electronic company material data.

  • PDF

Rate-Based Traffic Control of Industrial Networks Employing LonWorks

  • Cho, Kwang-Hyun;Kim, Byoung-Hee;Park, Kyoung-Sup
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.77-79
    • /
    • 2000
  • Industrial communication networks have attracted much attention in the area of decentralized control systems for factory automation and computer integrated manufacturing. In this paper, we investigate the rate-based traffic control of industrial communication networks employing LonWorks to improve the performance measures of throughput, fairness, and error rates. To this end, we utilize the Feedback channel information through the additional network monitoring node and make the overall system closed-loop. We demonstrate the improved performance of the controlled network system by the experimentation upon an implemented lab-scale network system.

  • PDF

Concept of the Cloud Type Virtual Policy Based Network Management Scheme for the Whole Internet

  • Kazuya, Odagiri;Shogo, Shimizu;Naohiro, Ishii
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • In the current Internet system, there are many problems using anonymity of the network communication such as personal information leaks and crimes using the Internet system. This is why TCP/IP protocol used in Internet system does not have the user identification information on the communication data, and it is difficult to supervise the user performing the above acts immediately. As a study for solving the above problem, there is the study of Policy Based Network Management (PBNM). This is the scheme for managing a whole Local Area Network (LAN) through communication control for every user. In this PBNM, two types of schemes exist. As one scheme, we have studied theoretically about the Destination Addressing Control System (DACS) Scheme with affinity with existing internet. By applying this DACS Scheme to Internet system management, we will realize the policy-based Internet system management. In this paper, to realize it, concept of the Internet PBNM Scheme is proposed as the final step.

Basic System Design in the PBNM Scheme for Multiple Domains as Cyber Physical System Using Data Science and AI

  • Kazuya Odagiri;Shogo Shimizu;Naohiro Ishii
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.1-7
    • /
    • 2023
  • In the current Internet system, there are many problems using anonymity of the network communication such as personal information leaks and crimes using the Internet system. This is why TCP/IP protocol used in Internet system does not have the user identification information on the communication data, and it is difficult to supervise the user performing the above acts immediately. As a study for solving the above problem, there is the study of Policy Based Network Management (PBNM). This is the scheme for managing a whole Local Area Network (LAN) through communication control for every user. In this PBNM, two types of schemes exist. As one scheme, we have studied theoretically about the Destination Addressing Control System (DACS) Scheme with affinity with existing internet. By applying this DACS Scheme to Internet system management, we will realize the policy-based Internet system management. In this paper, basic system design for PBNM scheme for multi-domain management utilizing data science and AI is proposed.

Vulnerability Analysis for Industrial Control System Cyber Security (산업제어시스템의 사이버보안을 위한 취약점 분석)

  • Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.137-142
    • /
    • 2014
  • Industrial control system (ICS) is a computer based system which are typically used in nation-wide critical infra-structure facilities such as electrical, gas, water, wastewater, oil and transportation. In addition, ICS is essentially used in industrial application domain to effectively monitor and control the remotely scattered systems. The highly developed information technology (IT) and related network techniques are continually adapted into domains of industrial control system. However, industrial control system is confronted significant side-effects, which ICS is exposed to prevalent cyber threats typically found in IT environments. Therefore, cyber security vulnerabilities and possibilities of cyber incidents are dramatically increased in industrial control system. The vulnerabilities that may be found in typical ICS are grouped into Policy and Procedure, Platform, and Network categories to assist in determining optimal mitigation strategies. The order of these vulnerabilities does not necessarily reflect any priority in terms of likelihood of occurrence or severity of impact. Firstly, corporate security policy can reduce vulnerabilities by mandating conduct such as password usage and maintenance or requirements for connecting modems to ICS. Secondly, platfom vulnerabilities can be mitigated through various security controls, such as OS and application patching, physical access control, and security software. Thirdly, network vulnerabilities can be eliminated or mitigated through various security controls, such as defense-in-depth network design, encrypting network communication, restricting network traffic flows, and providing physical access control for network components.