• Title/Summary/Keyword: Network-Based Communication Protocol

Search Result 1,187, Processing Time 0.032 seconds

An App Visualization design based on IoT Self-diagnosis Micro Control Unit for car accident prevention

  • Jeong, YiNa;Jeong, EunHee;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1005-1018
    • /
    • 2017
  • This paper proposes an App Visualization (AppV) based on IoT Self-diagnosis Micro Control Unit (ISMCU) for accident prevention. It collects a current status of a vehicle through a sensor, visualizes it on a smart phone and prevents vehicles from accident. The AppV consists of 5 components. First, a Sensor Layer (SL) judges noxious gas from a current vehicle and a driver's driving habit by collecting data from various sensors such as an Accelerator Position Sensor, an O2 sensor, an Oil Pressure Sensor, etc. and computing the concentration of the CO collected by a semiconductor gas sensor. Second, a Wireless Sensor Communication Layer (WSCL) supports Zigbee, Wi-Fi, and Bluetooth protocol so that it may transfer the sensor data collected in the SL to ISMCU and the data in the ISMCU to a Mobile. Third, an ISMCU integrates the transferred sensor information and transfers the integrated result to a Mobile. Fourth, a Mobile App Block Programming Tool (MABPT) is an independent App generation tool that changes to visual data just the vehicle information which drivers want from a smart phone. Fifth, an Embedded Module (EM) records the data collected through a Smart Phone real time in a Cloud Server. Therefore, because the AppV checks a vehicle' fault and bad driving habits that are not known from sensors and performs self-diagnosis through a mobile, it can reduce time and cost spending on accidents caused by a vehicle's fault and noxious gas emitted to the outside.

Direction-based Geographic Routing for Wireless Sensor Networks (센서 네트워크에서 장애물 극복을 위한 방향기반의 라우팅 기법)

  • Ko, Young-Il;Park, Chang-Sup;Son, In-Keun;Kim, Myoung-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.6
    • /
    • pp.438-450
    • /
    • 2006
  • Geographic routing protocols are very attractive choice for routing in wireless sensor networks because they have been shown to scale better than other alternatives. Under certain ideal conditions, geographic routing works correctly and efficiently. The most commonly used geographic routing protocols include greedy forwarding coupled with face routing. Existing face routing algorithms use planarization techniques that rely on the unit-graph assumption. In real world, many conditions violate the unit-graph assumption of network connectivity, such as location errors, communication voids and radio irregularity, cause failure in planarization and consequently face routing. In this paper, we propose the direction-based geographic routing, which enables energy efficient routing under realistic conditions without planarization techniques. Our proposed approach is for the case in which many sensors need to collect data and send it to a central node. Simulation results show that the protocol exhibits superior performances in terms of energy consumption, delivery success rate, and outperforms the compared protocols.

Power Allocation and Mode Selection in Unmanned Aerial Vehicle Relay Based Wireless Networks

  • Zeng, Qian;Huangfu, Wei;Liu, Tong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.711-732
    • /
    • 2019
  • Many unmanned aerial vehicle (UAV) applications have been employed for performing data collection in facilitating tasks such as surveillance and monitoring objectives in remote and dangerous environments. In light of the fact that most of the existing UAV relaying applications operate in conventional half-duplex (HD) mode, a full-duplex (FD) based UAV relay aided wireless network is investigated, in which the UAV relay helps forwarding information from the source (S) node to the destination (D). Since the activated UAV relays are always floating and flying in the air, its channel state information (CSI) as well as channel capacity is a time-variant parameter. Considering decode-and-forward (DF) relaying protocol in UAV relays, the cooperative relaying channel capacity is constrained by the relatively weaker one (i.e. in terms of signal-to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR)) between S-to-relay and relay-to-D links. The channel capacity can be optimized by adaptively optimizing the transmit power of S and/or UAV relay. Furthermore, a hybrid HD/FD mode is enabled in the proposed UAV relays for adaptively optimizing the channel utilization subject to the instantaneous CSI and/or remaining self-interference (SI) levels. Numerical results show that the channel capacity of the proposed UAV relay aided wireless networks can be maximized by adaptively responding to the influence of various real-time factors.

NBAS: NFT-based Bluetooth Device Authentication System (NBAS: NFT를 활용한 블루투스 장치 인증시스템)

  • Hwang, Seong-Uk;Son, Sung-Moo;Chung, Sung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.793-801
    • /
    • 2022
  • Most Bluetooth devices are commonly used in various ways these days, but they can be often lost due to small-size devices. However, most Bluetooth protocol do not provide authentication functions to legitimate owners, and thus someone who obtains the lost Bluetooth device can easily connect to their smart devices to use it. In this paper, we propose NBAS can authenticates legitimate owners using NFT on lossy Bluetooth devices.NBAS generates a digital wallet on the blockchain using the decentralized network Ethereum blockchain and facilitating the MAC address of the Bluetooth device in the digital wallet. The owner of the wallet uses a private key to certify the Bluetooth device using NFT. The initial pairing time of NBAS was 10.25 sec, but the reconnection time was 0.007 sec similar to the conventional method, and the pairing rejection time for unapproved users was 1.58 sec on average. Therefore, the proposed NBAS effectively shows the device authentication over the conventional Bluetooth.

Analysis of IEEE 802.11n System adapting SVD-MIMO Method based on Ns(Network simulator)-2 (Ns-2 기반의 SVD-MIMO 방식을 적용한 IEEE 802.11n 시스템 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Choi, Jin-Kyu;Kim, Kyung-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1109-1119
    • /
    • 2009
  • WLAN(Wireless Local Area Network) standard is currently developing with increased wireless internet demand. Though existing IEEE 802.11e demonstrates that data rates exceed 54Mbps with assuring QoS(Quality of Service), wireless internet users can't be satisfied with real communication system. After IEEE 802.11e system, Study trends of IEEE 802.11n show two aspects, enhanced system throughput using aggregation among packets in MAC (Medium Access Control) layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, no one demonstrates IEEE 802.11n system performance results considering MAC and PHY connection. Therefore, this paper adapts MIMO in PHY layer for IEEE 802.11n system based on A-MPDU(Aggregation-MAC Protocol Data Unit) method in MAC layer considering MAC and PHY connection. SVD(Singular Value Decomposition) method with WLAN MIMO TGn Channel is used to analyze MIMO. Consequently, Simulation results show enhanced throughput and data rates compared to existing system. Also, We use Ns-2(Network Simulator-2) considering MAC and PHY connection for reality.

  • PDF

Web-based Measurement of ECU Signals on Vehicle using Embedded Linux

  • Choi, Kwang-Hun;Lee, Lee;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.138-142
    • /
    • 2004
  • In this paper, we present a new method for monitoring of ECU's sensor signals of vehicle. In order to measure the ECU's sensor signals, the interfaced circuit is designed to communicate ECU and the Embedded Linux is used to monitor communication result through Web the Embedded Linux system and this system is said "ECU Interface Part". In ECU Interface Part the interface circuit is designed to match voltage level between ECU and SA-1110 micro controller and interface circuit to communicate ECU according to the ISO, SAE communication protocol standard. Because Embedded Linux does not allow to access hardware directly in application level, anyone who wants to modify any low level hardware must develop device driver. To monitor ECU's sensor signals the most important thing is to match serial level between ECU and ECU Interface Part. It means to communicate correctly between two hardware we need to match voltage and signal level, and need to match baudrate. The voltage of SA-1110 is 0 ${\sim}$ +3.3V and ECU is 0 ${\sim}$ +12V and, ECU's communication Line K does multiple operation so, the interface circuit is used to match voltage and signal level. In Addition to ECU's baudrate is 10400bps, it's not standard baudrate in computer environment. So, we need to develop a device driver to control the interface circuit, and change baudrate. To monitor ECU's sensor signals through web there's a network socket program is working in Embedded Linux. It works as server program and manages user's connections and commands. Anyone who wants to monitor ECU's sensor signals he just only connect to Embedded Linux system with web browser then, Embedded Linux webserver will return the ActiveX webbased measurement software. It works in web browser and inits ECU, as a result it returns sensor signals through web. All the programs are developed with GCC(GNU C Compiler) and, webbased measurement software is developed with Borland C++ Builder.

  • PDF

Concurrency Control and Consistency Maintenance of Cached Spatial Data in Client-Server Environment (클라이언트-서버 환경에서 캐쉬된 공간 데이터의 동시성 제어 및 일관성 유지 기법)

  • Shin, Young-Sang;Hong, Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.512-527
    • /
    • 2001
  • In a client-server spatial database, it is desirable to maintain the cached data in a client side to minimize the communication overhead across a network. This paper deals with the issues of concurrency and consistency of map updates in this environment. A client transaction to update map data is an interactive work and takes a long time to complete it. The map update in a client site may affect the other sites'updates because of dependencies between spatial data stored at different sites. The concurrent updates should be propagated to the other clients as well as the server to keep the consistency of map replicated in a client cache, and also the communication overhead of the update propagation should be minimized not to lose the benefit of caching. The newly proposed cache region locking with CR lock and CX lock controls the update dependency due to spatial relationships. CS lock and COD lock are suggested to use optimistic detection-based approaches for guaranteeing the consistency of cached client data. The cooperative update protocol uses these extended locking primitives and Spatial Relationship-based 2PC (SR-based 2PC). This paper argues that the concurrent updates of cached client spatial data can be achieved by deciding on collaborative updates or independent updates based on spatial relationships.

  • PDF

Analysis of the Bogus Routing Information Attacks in Sensor Networks (센서 네트워크에서 AODV 라우팅 정보 변조공격에 대한 분석)

  • Lee, Myung-Jin;Kim, Mi-Hui;Chae, Ki-Joon;Kim, Ho-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.229-238
    • /
    • 2007
  • Sensor networks consist of many tiny sensor nodes that collaborate among themselves to collect, process, analyze, and disseminate data. In sensor networks, sensor nodes are typically powered by batteries, and have limited computing resources. Moreover, the redeployment of nodes by energy exhaustion or their movement makes network topology change dynamically. These features incur problems that do not appear in traditional, wired networks. Security in sensor networks is challenging problem due to the nature of wireless communication and the lack of resources. Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop suity mechanisms that can survive malicious attacks from "insiders" who have access to the keying materials or the full control of some nodes. In order to protect against insider attacks, it is necessary to understand how an insider can attack a sensor network. Several attacks have been discussed in the literature. However, insider attacks in general have not been thoroughly studied and verified. In this paper, we study the insider attacks against routing protocols in sensor networks using the Ad-hoc On-Demand Distance Vector (AODV) protocol. We identify the goals of attack, and then study how to achieve these goals by modifying of the routing messages. Finally, with the simulation we study how an attacker affects the sensor networks. After we understand the features of inside attacker, we propose a detect mechanism using hop count information.

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

Implementation of Secure System for Blockchain-based Smart Meter Aggregation (블록체인 기반 스마트 미터 집계 보안 시스템 구축)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • As an important basic building block of the smart grid environment, smart meter provides real-time electricity consumption information to the utility. However, ensuring information security and privacy in the smart meter data aggregation process is a non-trivial task. Even though the secure data aggregation for the smart meter has been a lot of attention from both academic and industry researchers in recent years, most of these studies are not secure against internal attackers or cannot provide data integrity. Besides, their computation costs are not satisfactory because the bilinear pairing operation or the hash-to-point operation is performed at the smart meter system. Recently, blockchains or distributed ledgers are an emerging technology that has drawn considerable interest from energy supply firms, startups, technology developers, financial institutions, national governments and the academic community. In particular, blockchains are identified as having the potential to bring significant benefits and innovation for the electricity consumption network. This study suggests a distributed, privacy-preserving, and simple secure smart meter data aggregation system, backed up by Blockchain technology. Smart meter data are aggregated and verified by a hierarchical Merkle tree, in which the consensus protocol is supported by the practical Byzantine fault tolerance algorithm.