• Title/Summary/Keyword: Network system tuning

Search Result 193, Processing Time 0.032 seconds

Adaptive-Tuning of PID Controller using Self-Recurrent Neural Network (자기순환 신경망을 이용한 PID 제어기의 적응동조)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.121-124
    • /
    • 2001
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when th control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an adaptive-tuning type PID controller is constructed by self-recurrent Neural Network(SRNN). applying back-propagation(BP) algorithm. Form the result of computer simulation in the proposed controller, its usefulness is verified.

  • PDF

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF

The Real-Time Control of 3-Phase Induction Motor by DSP Application of Tuning Parameter Using Load Torque Observer and Neural Network (부하관측기와 신경망에 의해 설정된 파라미터의 DSP 적용에 의한 3상 유도전동기의 실시간 제어)

  • 권양원;윤양웅;강학수;안태천
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.135-135
    • /
    • 2000
  • In this Paper. the DSP implementation of induction motor drive is Presented on the viewpoint of the design and experiment. The speed estimation of control system for induction motor drive is designed on the base of neural network speed estimator. This neural network speed estimator is experimentally applied to the induction motor system. This system Provides the satisfactory results.

  • PDF

Adaptive Control Design for Missile using Neural Networks Augmentation of Existing Controller (기존제어기와 신경회로망의 혼합제어기법을 이용한 미사일 적응 제어기 설계)

  • Choi, Kwang-Chan;Sung, Jae-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1218-1225
    • /
    • 2008
  • This paper presents the design of a neural network based adaptive control for missile is presented. The application model is Exocet MM40, which is derived from missile DATCOM database. Acceleration of missile by tail Fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. So, the inner loop consists of DMI and NN (Neural Network) and the outer loop consists of PI controller. In order to satisfy the performances only with PI controller, it is necessary to do some additional process such as gain tuning and scheduling. In this paper, all flight area would be covered by just one PI gains without tuning and scheduling by applying mixture control technique of conventional controller and NN to the outer loop. Also, the simulation model is designed by considering non-minimum phase system and compared the performances to distinguish the validity of control law with conventional PI controller.

Automatic adjustment of feedforward signal in boiler controllers of thermal power plants

  • Egashira, Katsuya;Nakamura, Masatoshi;Eki, Yurio;Nomura, Masahide
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.83-86
    • /
    • 1995
  • This paper proposes an auto-tuning method of feedforward signal in boiler control of thermal power plants by using the neural network. The neural network produces an optimal feedforward signal by tuning the weights of the network. The weights are adapted effectively by using the teaching signal of PI control output. The proposed method was evaluated based on a detailed simulator which expressed non-linear characteristics of the 600 MW actual thermal power plant at load chaning operations, showed effectiveness in the learning of the weights of the neural network, and gave an accurate control performance in the temperature control of the system. Through the evaluation, the proposed method was proved to be effectively applicable to the actual thermal plants as the automatic adjustment tool.

  • PDF

Design of Adaptive Fuzzy Logic Controller for SVC using Neural Network (신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyun;Kim, Hyung-Su;Park, June-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.121-126
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLC[8] for. three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[8].

  • PDF

Optimizing System Performance for Uncompressed HDTV over 10-Gigabit Ethernet (10 기가비트 이더넷 기반 비압축 HDTV의 인터넷 전송을 위한 시스템 최적화 연구)

  • Jo, Jin-Yong;Seok, Woo-Jin;Lee, Min-Sun;Byeon, Ok-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.13C no.5 s.108
    • /
    • pp.575-582
    • /
    • 2006
  • Guaranteeing network bandwidth and system performance becomes important technical matters to make seamless delivery of bulky data at high speed. Tuning system and network parameters including jumbo frame, kernel buffer size, and interrupt coalescence determines end-to-end transmission throughput. Additionally, fine-tuning of the parameters alleviates workload on high-end systems. Until now, many studies have concentrated on how to increase transmission throughput but rarely discussed how to mitigate system workload. In this paper, we have investigated various tuning parameters, which positively affect networking and processing performance of uncompressed HDTV system.

A Feasibility Study on Application of Immune Network for Intelligent Controller of a Multivariable System

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.115.5-115
    • /
    • 2001
  • This paper suggests that the immune algorithm can effectively be used in tuning of a multivariable system. Then artificial immune network always has a new paraller decentralized processing mechanism for various situations, since antibodies communication to each other among different species of antibodies/B-cells through the simulation and suppression chains among antibodies that form a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. That is, the artificial immune network flexibly self-organizes according to dynamic changes of external environment (meta-dynamics function). However, up to the present time, models based on the conventional crisp approach ...

  • PDF

Design of self-tuning controller utilizing neural network (신경회로망기법을 이용한 자기동조제어기 설계)

  • 구영모;이윤섭;김대종;임은빈;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.399-401
    • /
    • 1989
  • Utilizing an interconnected set of neuron-like elements, the present study is to provide a method of parameter estimation for a second order linear time invariant system of self-tuning controller. The result from the proposed method is evaluated by comparing with those obtained by the recursive least square (RLS) identification algorithm and extended recursive least square (ERLS) algorithm, and it shows that, although the smoothness of system performance is still to be improved, the effectiveness of shorter computing time is demonstrated which may be of considerable value to real time computing.

  • PDF

Design of Multivariable Self Tuning PID Controllers (다변수 자기동조 PID 제어기의 설계)

  • Cho, Hyun-Seob;Jun, Ho-Ik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.341-343
    • /
    • 2010
  • The parameters of PID controller should be readjusted whenever system character change. In spite of a rapid development of control theory, this work needs much time and effort of expert. In this paper, to resolve this defect, after the sample of parameters in the changeable limits of system character is obtained, these parametrs are used as desired values of back propagation learning algorithm, also neural network auto tuner for PID controller is proposed by determing the optimum structure of neural network. Simulation results demonstrate that auto-tuning proper to system character can work well.

  • PDF