• Title/Summary/Keyword: Network system tuning

Search Result 193, Processing Time 0.028 seconds

Method on DTN Performance Acceleration and Packet Loss Minimization for Transfer Efficiency Maximizing (전송효율성 극대화를 위한 DTN 성능 가속 및 병목구간 패킷손실 최소화 방안)

  • Park, Jong-Seon;Noh, Min-Ki
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.37-43
    • /
    • 2018
  • Science DMZ is a network architecture that considers complicated network components such as dedicated network, DTN, and minimum security policy to maximize transfer efficiency. And DTN tuning is an essential component to take full advantage of Science DMZ's available bandwidth. In addition, tuning of network system should be performed concurrently to minimize packet loss due to network bottleneck. In this paper, we propose a tuning method of data transfer node and network system for maximizing transfer efficiency in Science DMZ network architecture. As a result of the performance measurement using the KREONET, the network performance after the DTN tuning shows 180% improvement than that of existing method without DTN tuning. In addition, performance of 9.4Gb/s was shown without loss of performance measurement after tuning network system applying shaping policy.

Neural Network Method for Tuning PID Gains (신경회로망을 이용한 PID 제어기의 이득조정)

  • Moon, Seok-Woo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.476-479
    • /
    • 1992
  • This paper presents a neural network method for tuning PlD controller of a time-varying process. Three gains of PlD controller are tuned for a certain desirable response pattern by back-propagation neural network. The neural network is trained using changes of output features vs. changes of PlD gains. But sometimes it needs longer training time and larger structure to train the correlation between the process and controller on entire region of the process. The difficulty in system identification is that the inverse function of the system can not be clearly stated. To cope with the problem, we do not train the neural network to respond correctly for the entire regions but train for only local region where the system is heading toward by training the neural network and tuning of the PlD controller. It may be trained for fine-tuning itself. Simulation results show that the adaptive PID controller using neural network trained in the local area performs remarkably for time-varying second order process.

  • PDF

Design of a nonlinear Multivariable Self-Tuning PID Controller based on neural network (신경회로망 기반 비선형 다변수 자기동조 PID 제어기의 설계)

  • Cho, Won-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.1-10
    • /
    • 2007
  • This paper presents a direct nonlinear multivariable self-tuning PID controller using neural network which adapts to the changing parameters of the nonlinear multivariable system with noises and time delays. The nonlinear multivariable system is divided linear part and nonlinear part. The linear controller are used the self-tuning PID controller that can combine the simple structure of a PID controllers with the characteristics of a self-tuning controller, which can adapt to changes in the environment. The linear controller parameters are obtained by the recursive least square. And the nonlinear controller parameters are achieved the through the Back-propagation neural network. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation results are presented to adapt the nonlinear multivariable system with noises and time delays and with changed system parameter after a constant time. The proposed PID type nonlinear multivariable self-tuning method using neural network is effective compared with the conventional direct multivariable adaptive controller using neural network.

Load Variation Compensated Neural Network Speed Controller for Induction Motor Drives

  • Oh, Won-Seok;Cho, Kyu-Min;Kim, Young-Tae;Kim, Hee-Jun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.97-102
    • /
    • 2003
  • In this paper, a recurrent artificial neural network (RNN) based self-tuning speed controller is proposed for the high-performance drives of induction motors. The RNN provides a nonlinear modeling of a motor drive system and could provide the controller with information regarding the load variation system noise, and parameter variation of the induction motor through the on-line estimated weights of the corresponding RNN. Thus, the proposed self-tuning controller can change the gains of the controller according to system conditions. The gain is composed with the weights of the RNN. For the on-line estimation of the RNN weights, an extended Kalman filter (EKF) algorithm is used. A self-tuning controller is designed that is adequate for the speed control of the induction motor The availability of the proposed controller is verified through MATLAB simulations and is compared with the conventional PI controller.

Multiobjective PI Controller Tuning of Multivariable Boiler Control System Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.78-86
    • /
    • 2003
  • Multivariable control system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, Pill Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the Pill controller has to be manually tuned by trial and error. This paper suggests a tuning method of the Pill Controller for the multivariable power plant using an immune algorithm, through computer simulation. Tuning results by immune algorithms based neural network are compared with the results of genetic algorithm.

Design of a Direct Self-tuning Controller Using Neural Network (신경회로망을 이용한 직접 자기동조제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.264-274
    • /
    • 2003
  • This paper presents a direct generalized minimum-variance self tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior, noises and time delays. The self-tuning controller with a PID structure is a combination of the simple structure of a PID controller and the characteristics of a self-tuning controller that can adapt to changes in the environment. The self-tuning control effect is achieved through the RLS (recursive least square) algorithm at the parameter estimation stage as well as through the Robbins-Monro algorithm at the stage of optimizing the design parameter of the controller. The neural network control effect which compensates for nonlinear factor is obtained from the learning algorithm which the learning error between the filtered reference and the auxiliary output of plant becomes zero. Computer simulation has shown that the proposed method works effectively on the nonlinear nonminimum phase system with time delays and changed system parameter.

Intelligent Control by Immune Network Algorithm Based Auto-Weight Function Tuning

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.120.2-120
    • /
    • 2002
  • In this paper auto-tuning scheme of weight function in the neural networks has been suggested by immune algorithm for nonlinear process. A number of structures of the neural networks are considered as learning methods for control system. A general view is provided that they are the special cases of either the membership functions or the modification of network structure in the neural networks. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also. It can provi..

  • PDF

A Systematic Approach for Designing a Self-Tuning Power System Stabilizer Based on Artificial Neural Network

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.281-286
    • /
    • 2005
  • The main objective of the research work presented in this article is to present a systematic approach for designing a multilayer feed-forward artificial neural network based self-tuning power system stabilizer (ST-ANNPSS). In order to suggest an approach for selecting the number of neurons in the hidden layer, the dynamic performance of the system with ST-ANNPSS is studied and hence compared with that of conventional PSS. Finally the effect of variation of loading condition and equivalent reactance, Xe is investigated on dynamic performance of the system with ST-ANNPSS. Investigations reveal that ANN with one hidden layer comprising nine neurons is adequate and sufficient for ST-ANNPSS. Studies show that the dynamic performance of STANNPSS is quite superior to that of conventional PSS for the loading condition different from the nominal. Also it is revealed that the performance of ST-ANNPSS is quite robust to a wide variation in loading condition.

  • PDF

Design of a Neural Network Based Self-Tuning Fuzzy PID Controller (신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Im, Jeong-Heum;Lee, Chang-Goo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF

Intelligent Control of Multivariable Process Using Immune Network System

  • Kim, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2126-2128
    • /
    • 2001
  • This paper suggests that the immune network algorithm based on fuzzy set can effectively be used in tuning of a PID controller for multivariable process or nonlinear process. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that from a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. On the other hand, a number of tuning technologies have been considered for the tuning of a PID controller. As a less common method, the fuzzy and neural network or its combined techniques are applied. However, in the case of the latter, yet, it is not applied in the practical field, in the former, a higher experience and technology is required during tuning procedure. Along with these, this paper used the fuzzy set in order that the stimulation and suppression relationship between antibody and antigen can be more adaptable controlled against the external condition, including noise or disturbance of plant. The immune network based on fuzzy set suggested here is applied for the PID controller tuning of multivariable process with two inputs and one output and is simulated.

  • PDF