• 제목/요약/키워드: Network system tuning

검색결과 193건 처리시간 0.032초

전송효율성 극대화를 위한 DTN 성능 가속 및 병목구간 패킷손실 최소화 방안 (Method on DTN Performance Acceleration and Packet Loss Minimization for Transfer Efficiency Maximizing)

  • 박종선;노민기
    • 한국융합학회논문지
    • /
    • 제9권11호
    • /
    • pp.37-43
    • /
    • 2018
  • Science DMZ는 종단간 전송효율성 극대화를 위해 전용네트워크, DTN, 최소한의 보안정책과 같은 복합적인 요소를 고려한 네트워크 구조이다. 그리고 Science DMZ의 고대역폭의 전용네트워크를 충분히 활용하기 위해서는 DTN 튜닝이 필수적인 요소이다. 아울러 네트워크 병목구간으로 인한 패킷손실을 최소화하기 위해 네트워크 시스템의 튜닝이 병행적으로 수행되어야 한다. 본 논문에서는 Science DMZ 네트워크 구조에서 전송효율성 극대화를 위한 데이터 전송 노드 및 네트워크 시스템 튜닝 방안에 대해 제안한다. 국가과학기술연구망을 이용한 성능측정결과 DTN 튜닝 후 네트워크 성능이 튜닝을 하지 않을 것과 비교해 180% 성능향상을 보였다. 아울러 shaping 정책을 적용한 네트워크 시스템 튜닝 후 성능측정결과 손실 없이 9.4Gb/s의 성능을 보였다.

신경회로망을 이용한 PID 제어기의 이득조정 (Neural Network Method for Tuning PID Gains)

  • 문석우;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.476-479
    • /
    • 1992
  • This paper presents a neural network method for tuning PlD controller of a time-varying process. Three gains of PlD controller are tuned for a certain desirable response pattern by back-propagation neural network. The neural network is trained using changes of output features vs. changes of PlD gains. But sometimes it needs longer training time and larger structure to train the correlation between the process and controller on entire region of the process. The difficulty in system identification is that the inverse function of the system can not be clearly stated. To cope with the problem, we do not train the neural network to respond correctly for the entire regions but train for only local region where the system is heading toward by training the neural network and tuning of the PlD controller. It may be trained for fine-tuning itself. Simulation results show that the adaptive PID controller using neural network trained in the local area performs remarkably for time-varying second order process.

  • PDF

신경회로망 기반 비선형 다변수 자기동조 PID 제어기의 설계 (Design of a nonlinear Multivariable Self-Tuning PID Controller based on neural network)

  • 조원철
    • 전자공학회논문지SC
    • /
    • 제44권6호
    • /
    • pp.1-10
    • /
    • 2007
  • 본 논문에서는 비선형 다변수 시스템에 적응할 수 있는 신경회로망을 이용한 PID 구조를 갖는 직접 다변수 자기동조 제어기를 제안한다. 제어기에 적용되는 플랜트는 잡음, 시간지연과 상호결합항이 존재하며 파라미터가 변하는 비선형 다변수 시스템이다. 비선형 다변수 시스템은 선형부분과 비선형부분으로 분리한 형태로 구성되며, 선형제어기는 외부환경 변화에 적응할 수 있는 PID 제어기 특성을 가진 자기동조 PID 제어기 이다. 선형부분의 제어기 파라미터는 순환최소자승법으로 직접 추정하고 비선형 부분의 파라미터는 신경회로망으로 추정한다. 그리고 각 부분에서 추정한 파라미터를 합한 후 비선형 다변수 일반화 자기동조 제어기의 제어법칙에 적용한다. 제어 알고리듬의 타당성을 확인하기 위해 시간 지연이 있고 일정한 시간이 경과한 후 시스템의 파라미터가 변하는 비선형 다변수 시스템에 대해 컴퓨터 시뮬레이션을 하였다. 또한 기존의 신경회로망을 이용한 직접 다변수 적응 제어기에 비해 효과적이다.

Load Variation Compensated Neural Network Speed Controller for Induction Motor Drives

  • Oh, Won-Seok;Cho, Kyu-Min;Kim, Young-Tae;Kim, Hee-Jun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권2호
    • /
    • pp.97-102
    • /
    • 2003
  • In this paper, a recurrent artificial neural network (RNN) based self-tuning speed controller is proposed for the high-performance drives of induction motors. The RNN provides a nonlinear modeling of a motor drive system and could provide the controller with information regarding the load variation system noise, and parameter variation of the induction motor through the on-line estimated weights of the corresponding RNN. Thus, the proposed self-tuning controller can change the gains of the controller according to system conditions. The gain is composed with the weights of the RNN. For the on-line estimation of the RNN weights, an extended Kalman filter (EKF) algorithm is used. A self-tuning controller is designed that is adequate for the speed control of the induction motor The availability of the proposed controller is verified through MATLAB simulations and is compared with the conventional PI controller.

Multiobjective PI Controller Tuning of Multivariable Boiler Control System Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.78-86
    • /
    • 2003
  • Multivariable control system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, Pill Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the Pill controller has to be manually tuned by trial and error. This paper suggests a tuning method of the Pill Controller for the multivariable power plant using an immune algorithm, through computer simulation. Tuning results by immune algorithms based neural network are compared with the results of genetic algorithm.

신경회로망을 이용한 직접 자기동조제어기의 설계 (Design of a Direct Self-tuning Controller Using Neural Network)

  • 조원철;이인수
    • 전자공학회논문지SC
    • /
    • 제40권4호
    • /
    • pp.264-274
    • /
    • 2003
  • 본 논문에서는 잡음과 시간지연이 존재하며 시스템 파라미터가 변하는 비선형 비최소위상 시스템에 적응하는 신경회로망이 결합된 PID구조를 갖는 일반화 최소분산 자기동조제어기를 제안한다. PID구조를 갖는 자기동조는 PID제어기처럼 구조가 간단하고 계통을 정밀하게 제어하는 자기동조 제어기의 특성을 그대로 유지할 수 있다. 일반화 최소분산 자기동조 제어기 파라미터는 비선형 시스템을 선형시스템으로 간주하고 순환최소자승법으로 추정하며 설계계수의 값은 확률근사법인 Robbins-Monro 알고리듬을 이용하여 자동조정하였다. 역전파 학습 알고리듬을 사용하는 신경회로망 제어기는 비선형 부분의 제어를 보상하기 위해 필터된 기준입력과 필터된 플랜트 출력이 같도록 제어값을 출력한다. 컴퓨터 시뮬레이션을 통해 제안한 방법이 시스템의 파라미터가 변하는 비최소위상 시스템에 잘 적응함을 보였다.

Intelligent Control by Immune Network Algorithm Based Auto-Weight Function Tuning

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.120.2-120
    • /
    • 2002
  • In this paper auto-tuning scheme of weight function in the neural networks has been suggested by immune algorithm for nonlinear process. A number of structures of the neural networks are considered as learning methods for control system. A general view is provided that they are the special cases of either the membership functions or the modification of network structure in the neural networks. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also. It can provi..

  • PDF

A Systematic Approach for Designing a Self-Tuning Power System Stabilizer Based on Artificial Neural Network

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.281-286
    • /
    • 2005
  • The main objective of the research work presented in this article is to present a systematic approach for designing a multilayer feed-forward artificial neural network based self-tuning power system stabilizer (ST-ANNPSS). In order to suggest an approach for selecting the number of neurons in the hidden layer, the dynamic performance of the system with ST-ANNPSS is studied and hence compared with that of conventional PSS. Finally the effect of variation of loading condition and equivalent reactance, Xe is investigated on dynamic performance of the system with ST-ANNPSS. Investigations reveal that ANN with one hidden layer comprising nine neurons is adequate and sufficient for ST-ANNPSS. Studies show that the dynamic performance of STANNPSS is quite superior to that of conventional PSS for the loading condition different from the nominal. Also it is revealed that the performance of ST-ANNPSS is quite robust to a wide variation in loading condition.

  • PDF

신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Design of a Neural Network Based Self-Tuning Fuzzy PID Controller)

  • 임정흠;이창구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권1호
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF

Intelligent Control of Multivariable Process Using Immune Network System

  • Kim, Dong-Hwa
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2126-2128
    • /
    • 2001
  • This paper suggests that the immune network algorithm based on fuzzy set can effectively be used in tuning of a PID controller for multivariable process or nonlinear process. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that from a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. On the other hand, a number of tuning technologies have been considered for the tuning of a PID controller. As a less common method, the fuzzy and neural network or its combined techniques are applied. However, in the case of the latter, yet, it is not applied in the practical field, in the former, a higher experience and technology is required during tuning procedure. Along with these, this paper used the fuzzy set in order that the stimulation and suppression relationship between antibody and antigen can be more adaptable controlled against the external condition, including noise or disturbance of plant. The immune network based on fuzzy set suggested here is applied for the PID controller tuning of multivariable process with two inputs and one output and is simulated.

  • PDF