• 제목/요약/키워드: Network model

검색결과 12,491건 처리시간 0.038초

국내 연약지반의 선행압밀하중 추정을 위한 피에조콘 인공신경망 모델 (Piezocone Neural Network Model for Estimation of Preconsolidation Pressure of Korean Soft Soils)

  • 김영상
    • 한국지반공학회논문집
    • /
    • 제20권8호
    • /
    • pp.77-87
    • /
    • 2004
  • 본 논문에서는 국내 서남해안 11개 지역에서 수행된 63회의 피에조콘 시험결과와 176개의 선행압밀하중 자료로부터 국내 연약지반의 선행압밀하중 예측을 위한 오차 역전파 알고리즘으로 학습된 피에조콘 인공신경망 모델을 구축하였다. 전체 자료 중 147개의 자료만이 인공신경망 모델 구축을 위한 학습과정에 사용되었으며 학습에 사용되지 않은 29개의 자료를 구축된 인공신경망의 검증에 활용하였다. 또한 기존의 경험모델 및 이론모델과 비교하여 제안된 인공신경망 모델의 유용성을 확인하였다. 연구를 통하여 4-4-9-1의 구조를 갖는 간단한 다층 인공신경망이 구축되었으며 입력값으로는 피에조콘 선단저항력 $q_T$, 관입간극수압 $u_2$그리고 지반의 총상재하중 $\sigma_{vo}$ 및 유효상재하중 $\sigma'_{vo}$ 이 사용되었다. 제안된 인공신경망 모델은 학습되지 않은 새로운 검증자료에 대한 예측을 통하여 입력변수들과 선행압밀 하중 간의 비선형적 상관관계를 성공적으로 모델하는 것으로 검증되었으며 정확성면에서는 기존의 이론모델과 국내외 경험모델과 비교할 때 월등히 향상된 예측능력을 가진 것으로 나타났다. 뿐만 아니라 제안된 모델은 국내 특정지 역에 대한 모델이 아니라 서남해안의 다양한 지반특성을 갖는 지반에서 수행된 자료를 바탕으로 구축되어 데이터베이스에 포함되지 않은 지역에 대하여도 매우 타당성있는 예측결과를 주어 특정지역에 국한된 지역의존적 예측이 아닌 일반화된 지역에서 적용할 수 있을 것으로 판단된다.

하이브리드 다중 Hub-and-Spoke 차량 경로 계획 모형 : 현대모비스 자동차 보수용 부품 사내 운송 계획 최적화를 중심으로 (Hybrid Multiple Hub-and-Spoke Vehicle Routing Model for Hyundai Mobis Automotive Service Parts Transportation Planning)

  • 이용대;정현종;손영수;윤치환
    • 경영과학
    • /
    • 제28권3호
    • /
    • pp.1-13
    • /
    • 2011
  • Hub-and-spoke transportation network is a powerful and useful network structure that takes full advantage of economies of scale on routes between hubs. In recent studies, the network structure is extended to hybrid hub-andspoke that allows direct transportation between spokes. In this study, we considered more extended network structure which is called hybrid multiple hub-and-spoke that has multiple hubs and allows direct transportation between spokes. We developed a mathematical optimization model for automotive service parts transportation planning under hybrid multiple hub-and-spoke network structure. The model suggests a long-term transportation route planning and a short-term vehicle assignment planning. The model is verified by simulation and validated in real world application to Hyundai Mobis automotive service parts transportation planning. From the simulation result, the model reduced the transportation cost about 24.7%, the total distance about 6.8% and the CO2 emissions about 8.8%. In real world application for 6 months from July to December 2010, the model reduced the transportation cost about 9.1% by changing the long-term transportation route without daily vehicle assignment planning.

선형계획법을 이용한 협업공급망계획 수립모델 (A Linear Programming Approach for Supply Network Planning based on Supply Chain Collaboration Strategy)

  • 이승근;이홍철
    • 산업공학
    • /
    • 제17권4호
    • /
    • pp.472-481
    • /
    • 2004
  • In this paper, we propose a linear programming model of supply planning process for the supply chain collaboration strategy of a company. The amount of its supplying quantity relies on outsourcing suppliers heavily. Conversely, the revenues of those suppliers are highly dependent on the supplying quota from the supply network planning of the company. In order to keep the supply stable through collaboration, the company builds such a policy to guarantee the fairness on revenue between the supplies. For this, the supply network plan should keep the capacity utilization ratio even for all the suppliers. But the production capacities are different and the distribution of molds is disproportional through suppliers, so the supply network plan is not easily established with simple arithmetic processes. Therefore, we developed the linear programming model with those target function and constraints minimizing the costs for holding inventory and penalty of delayed delivery, simultaneously guaranteeing the even capacity utilization through suppliers. The proposed model has been applied to real case and the evaluation for the planning result from the model would be followed in order to make sure that our model guarantee on extracting the supply network plan subordinated to the policy. Also we mention about further studies for improvement of the model.

방사형기저함수망을 이용한 표면 비드폭 예측에 관한 연구 (A Study on Prediction for Top Bead Width using Radial Basis Function Network)

  • 손준식;김인주;김일수;김학형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.170-174
    • /
    • 2004
  • Despite the widespread use in the various manufacturing industries, the full automation of the robotic CO$_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an Radial basis function network model to predict the weld top-bead width as a function of key process parameters in the robotic CO$_2$ welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to verify performance. of the developed model.

  • PDF

FAGON: Fake News Detection Model Using Grammatical Transformation on Deep Neural Network

  • Seo, Youngkyung;Han, Seong-Soo;Jeon, You-Boo;Jeong, Chang-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.4958-4970
    • /
    • 2019
  • As technology advances, the amount of fake news is increasing more and more by various reasons such as political issues and advertisement exaggeration. However, there have been very few research works on fake news detection, especially which uses grammatical transformation on deep neural network. In this paper, we shall present a new Fake News Detection Model, called FAGON(Fake news detection model using Grammatical transformation On deep Neural network) which determines efficiently if the proposition is true or not for the given article by learning grammatical transformation on neural network. Especially, our model focuses the Korean language. It consists of two modules: sentence generator and classification. The former generates multiple sentences which have the same meaning as the proposition, but with different grammar by training the grammatical transformation. The latter classifies the proposition as true or false by training with vectors generated from each sentence of the article and the multiple sentences obtained from the former model respectively. We shall show that our model is designed to detect fake news effectively by exploiting various grammatical transformation and proper classification structure.

MODELING THE HYDRAULIC CHARACTERISTICS OF A FRACTURED ROCK MASS WITH CORRELATED FRACTURE LENGTH AND APERTURE: APPLICATION IN THE UNDERGROUND RESEARCH TUNNEL AT KAERI

  • Bang, Sang-Hyuk;Jeon, Seok-Won;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.639-652
    • /
    • 2012
  • A three-dimensional discrete fracture network model was developed in order to simulate the hydraulic characteristics of a granitic rock mass at Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The model used a three-dimensional discrete fracture network (DFN), assuming a correlation between the length and aperture of the fractures, and a trapezoid flow path in the fractures. These assumptions that previous studies have not considered could make the developed model more practical and reasonable. The geologic and hydraulic data of the fractures were obtained in the rock mass at the KURT. Then, these data were applied to the developed fracture discrete network model. The model was applied in estimating the representative elementary volume (REV), the equivalent hydraulic conductivity tensors, and the amount of groundwater inflow into the tunnel. The developed discrete fracture network model can determine the REV size for the rock mass with respect to the hydraulic behavior and estimate the groundwater flow into the tunnel at the KURT. Therefore, the assumptions that the fracture length is correlated to the fracture aperture and the flow in a fracture occurs in a trapezoid shape appear to be effective in the DFN analysis used to estimate the hydraulic behavior of the fractured rock mass.

한국형 EMS 시스템의 Baseline 계통 해석용 소프트웨어 개발을 위한 데이터 모델링 (Data Modeling for Developing the Baseline Network Analysis Software of Korean EMS System)

  • 윤상윤;조윤성;이욱화;이진;손진만
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1842-1848
    • /
    • 2009
  • This paper summarizes a data modeling for developing the baseline network analysis software of the Korean energy management system (EMS). The study is concentrated on the following aspects. First, the data for operating the each application software are extracted. Some of the EMS network application softwares are selected for basis model. Those are based on the logical functions of each software and are not considered the other softwares. Second, the common data are extracted for equipment model and topological structure of power system in Korea. We propose the application common model(ACM) that can be applied whole EMS network application softwares. The ACM model includes the hierarchy and non-hierarchy power system structure, and is connected each other using the direct and indirect link. Proposed database model is tested using the Korea Electric Power Corporation(KEPCO) system. The real time SCADA data are provided for the test. Through the test, we verified that the proposed database structure can be effectively used to accomplish the Korean EMS system.

농산물의 가격특성을 고려한 최적경로 선정모델 개발 (Development of An Optimal Routes Selection Model Considering Price Characteristics of Agricultural Products)

  • Suh, Kyo;Lee, Jeong-Jae;Huh, Yoo-Man;Kim, Han-Joong;Yi, Ho-Jae
    • 한국농공학회논문집
    • /
    • 제46권1호
    • /
    • pp.121-131
    • /
    • 2004
  • Transportation and logistics of agricultural products have been one of the major interests of many researches. Most of researches have been limited to presuming these as a first dimensional process or considering only economic value of agricultural products at each stage of logistics. However, the particular characteristics of agricultural products, such as quality change during transportation or extensively scattered origins, require examining these problems as a whole system. Network model has been adopted to represent nodes, which stand for spatial location of demand and supply of agricultural products, and communication between these nodes. Based on network theory and advanced marketing potential function, an optimal routes selection model is developed. The model employed network simplex method for routes optimization. The application of the model focused on transportation network organization to reflect different market prices for different locations and resulted in optimum routes and profit improvement of the applied agricultural product.

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

Empirical Investigations to Plant Leaf Disease Detection Based on Convolutional Neural Network

  • K. Anitha;M.Srinivasa Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제23권6호
    • /
    • pp.115-120
    • /
    • 2023
  • Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.