• Title/Summary/Keyword: Network intrusion prevention

Search Result 80, Processing Time 0.03 seconds

Security Simulation with Collaboration of Intrusion Detection System and Firewall (침입 탐지 시스템과 침입 차단 시스템의 연동을 통한 보안 시뮬레이션)

  • 서희석;조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.1
    • /
    • pp.83-92
    • /
    • 2001
  • For the prevention of the network intrusion from damaging the system, both IDS (Intrusion Detection System) and Firewall are frequently applied. The collaboration of IDS and Firewall efficiently protects the network because of making up for the weak points in the each demerit. A model has been constructed based on the DEVS (Discrete Event system Specification) formalism for the simulation of the system that consists of IDS and Firewall. With this model we can simulation whether the intrusion detection, which is a core function of IDS, is effectively done under various different conditions. As intrusions become more sophisticated, it is beyond the scope of any one IDS to deal with them. Thus we placed multiple IDS agents in the network where the information helpful for detecting the intrusions is shared among these agents to cope effectively with attackers. If an agent detects intrusions, it transfers attacker's information to a Firewall. Using this mechanism attacker's packets detected by IDS can be prevented from damaging the network.

  • PDF

Unethical Network Attack Detection and Prevention using Fuzzy based Decision System in Mobile Ad-hoc Networks

  • Thanuja, R.;Umamakeswari, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2086-2098
    • /
    • 2018
  • Security plays a vital role and is the key challenge in Mobile Ad-hoc Networks (MANET). Infrastructure-less nature of MANET makes it arduous to envisage the genre of topology. Due to its inexhaustible access, information disseminated by roaming nodes to other nodes is susceptible to many hazardous attacks. Intrusion Detection and Prevention System (IDPS) is undoubtedly a defense structure to address threats in MANET. Many IDPS methods have been developed to ascertain the exceptional behavior in these networks. Key issue in such IDPS is lack of fast self-organized learning engine that facilitates comprehensive situation awareness for optimum decision making. Proposed "Intelligent Behavioral Hybridized Intrusion Detection and Prevention System (IBH_IDPS)" is built with computational intelligence to detect complex multistage attacks making the system robust and reliable. The System comprises of an Intelligent Client Agent and a Smart Server empowered with fuzzy inference rule-based service engine to ensure confidentiality and integrity of network. Distributed Intelligent Client Agents incorporated with centralized Smart Server makes it capable of analyzing and categorizing unethical incidents appropriately through unsupervised learning mechanism. Experimental analysis proves the proposed model is highly attack resistant, reliable and secure on devices and shows promising gains with assured delivery ratio, low end-to-end delay compared to existing approach.

Design of Hybrid Network Probe Intrusion Detector using FCM

  • Kim, Chang-Su;Lee, Se-Yul
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The advanced computer network and Internet technology enables connectivity of computers through an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, making it vulnerable to previously unidentified attack patterns and variations in attack and increasing false negatives. Intrusion detection and prevention technologies are thus required. We proposed a network based hybrid Probe Intrusion Detection model using Fuzzy cognitive maps (PIDuF) that detects intrusion by DoS (DDoS and PDoS) attack detection using packet analysis. A DoS attack typically appears as a probe and SYN flooding attack. SYN flooding using FCM model captures and analyzes packet information to detect SYN flooding attacks. Using the result of decision module analysis, which used FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance evaluation, the "IDS Evaluation Data Set" created by MIT was used. From the simulation we obtained the max-average true positive rate of 97.064% and the max-average false negative rate of 2.936%. The true positive error rate of the PIDuF is similar to that of Bernhard's true positive error rate.

Intelligent Intrusion Detection and Prevention System using Smart Multi-instance Multi-label Learning Protocol for Tactical Mobile Adhoc Networks

  • Roopa, M.;Raja, S. Selvakumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2895-2921
    • /
    • 2018
  • Security has become one of the major concerns in mobile adhoc networks (MANETs). Data and voice communication amongst roaming battlefield entities (such as platoon of soldiers, inter-battlefield tanks and military aircrafts) served by MANETs throw several challenges. It requires complex securing strategy to address threats such as unauthorized network access, man in the middle attacks, denial of service etc., to provide highly reliable communication amongst the nodes. Intrusion Detection and Prevention System (IDPS) undoubtedly is a crucial ingredient to address these threats. IDPS in MANET is managed by Command Control Communication and Intelligence (C3I) system. It consists of networked computers in the tactical battle area that facilitates comprehensive situation awareness by the commanders for timely and optimum decision-making. Key issue in such IDPS mechanism is lack of Smart Learning Engine. We propose a novel behavioral based "Smart Multi-Instance Multi-Label Intrusion Detection and Prevention System (MIML-IDPS)" that follows a distributed and centralized architecture to support a Robust C3I System. This protocol is deployed in a virtually clustered non-uniform network topology with dynamic election of several virtual head nodes acting as a client Intrusion Detection agent connected to a centralized server IDPS located at Command and Control Center. Distributed virtual client nodes serve as the intelligent decision processing unit and centralized IDPS server act as a Smart MIML decision making unit. Simulation and experimental analysis shows the proposed protocol exhibits computational intelligence with counter attacks, efficient memory utilization, classification accuracy and decision convergence in securing C3I System in a Tactical Battlefield environment.

An Adaptive Probe Detection Model using Fuzzy Cognitive Maps

  • Lee, Se-Yul;Kim, Yong-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.660-663
    • /
    • 2003
  • The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using Fuzzy Cognitive Maps(FCM) that can detect intrusion by the Denial of Service(DoS) attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The Sp flooding Preventer using Fuzzy cognitive maps(SPuF) model captures and analyzes the packet information to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. The result of simulating the "KDD ′99 Competition Data Set" in the SPuF model shows that the Probe detection rates were over 97 percentages.

  • PDF

Development of Malicious Traffic Detection and Prevention System by Embedded Module on Wireless LAN Access Point (무선 LAN Access Point에서 임베디드 형태의 유해 트래픽 침입탐지/차단 시스템 개발)

  • Lee, Hyung-Woo;Choi, Chang-Won
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.29-39
    • /
    • 2006
  • With the increasing popularity of the wireless network, the vulnerability issue on IEEE 802.1x Wireless Local Area Network (WLAN) are more serious than we expected. Security issues range from mis-configured wireless Access Point(AP) such as session hijacking to Denial of Service(DoS) attack. We propose a new system based on intrusion detection or prevention mechanism to protect the wireless network against these attacks. The proposed system has a security solution on AP that includes an intrusion detection and protection system(IDS/IPS) as an embedded module. In this paper, we suggest integrated wireless IDS/IPS module on AP with wireless traffic monitoring, analysis and packet filtering module against malicious wireless attacks. We also present that the system provides both enhanced security and performance such as on the university wireless campus network.

  • PDF

A Novel Architecture for Real-time Automated Intrusion Detection Fingerprinting using Honeypot

  • Siddiqui, Muhammad Shoaib;Hong, Choong-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1093-1095
    • /
    • 2007
  • As the networking and data communication technology is making progress, there has been an augmented concern about the security. Intrusion Detection and Prevention Systems have long being providing a reliable layer in the field of Network Security. Intrusion Detection System works on analyzing the traffic and finding a known intrusion or attack pattern in that traffic. But as the new technology provides betterment for the world of the Internet; it also provides new and efficient ways for hacker to intrude in the system. Hence, these patterns on which IDS & IPS work need to be updated. For detecting the power and knowledge of attackers we sometimes make use of Honey-pots. In this paper, we propose a Honey-pot architecture that automatically updates the Intrusion's Signature Knowledge Base of the IDS in a Network.

Wireless Intrusion Prevention System based on Snort Wireless (Snort Wireless 기반의 무선 침입 방지 시스템)

  • Kim, A-Yong;Jeong, Dae-Jin;Park, Man-Seub;Kim, Jong-Moon;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.666-668
    • /
    • 2013
  • Wireless network environment is spreading due to the increase of using mobile devices, causing wireless network abuse. Network security and intrusion detection have been paid attention to wireless as well as wired existing and studied actively Snort-based intrusion detection system (Intrusion Detection System) is a proven open source system which is widely used for the detection of malicious activity in the existing wired network. Snort Wireless has been developed in order to enable the 802.11 wireless detection feature. In this paper, Snort Wireless Rule is analyzed. Based on the results of the analysis, present the traveling direction of future research.

  • PDF

A Study on Network based Intelligent Intrusion Prevention model by using Fuzzy Cognitive Maps on Denial of Service Attack (서비스 거부 공격에서의 퍼지인식도를 이용한 네트워크기반의 지능적 침입 방지 모델에 관한 연구)

  • Lee, Se-Yul;Kim, Yong-Soo;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.148-153
    • /
    • 2003
  • A DoS(Denial of Service) attack appears in the form of the intrusion attempt and Syn Flooding attack is a typical example. The Syn Flooding attack takes advantage of the weak point of 3-way handshake between the end-points of TCP which is the connection-oriented transmission service and has the reliability This paper proposes a NIIP(Network based Intelligent Intrusion Prevention) model. This model captures and analyzes the packet informations for the detection of Syn Flooding attack. Using the result of analysis of decision module, the decision module, which utilizes FCM(Fuzzy Cognitive Maps), measures the degree of danger of the DoS and trains the response module to deal with attacks. This model is a network based intelligent intrusion prevention model that reduces or prevents the danger of Syn Flooding attack.

A Probe Prevention Model for Detection of Denial of Service Attack on TCP Protocol (TCP 프로토콜을 사용하는 서비스거부공격 탐지를 위한 침입시도 방지 모델)

  • Lee, Se-Yul;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2003
  • The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using FCM(Fuzzy Cognitive Maps) that can detect intrusion by the DoS attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The SPuF(Syn flooding Preventer using Fussy cognitive maps) model captures and analyzes the packet informations to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance comparison, the "KDD′99 Competition Data Set" made by MIT Lincoln Labs was used. The result of simulating the "KDD′99 Competition Data Set" in the SPuF model shows that the probe detection rates were over 97 percentages.