도로의 설계 및 운영 등에 필요한 연평균 일 교통량은 365일 조사에 의한 것이 아닌 단기간 조사된 교통량을 사용하는 것으로써 이를 추정하려는 연구는 이전부터 있어왔다. 본 연구에서는 기존 연구를 바탕으로 이 AADT 추정의 방법을 개선시키고자 하였다. 먼저 그룹간의 차이를 뚜렷이 보여줄 수 있는 변수를 찾기 위해 그룹의 수를 변화시켜가며 각 그룹의 시간변 동요인들(전체, 주중, 토요일, 일요일, 주중-토요일, 주중-일요일)의 값을 살펴보아 그 차이가 가장 뚜렷한 변동 요인을 주중-일요일의 시간변동 요인으로 선정하였다. 그 다음 월 변동요인만을 사용하여 상시조사지점을 clustering하였다. 그룹간의 시간변동요인의 차이를 가장 크게 하는 것을 원칙으로 군집분석을 한 결과 10개의 그룹으로 묶을 수 있었다. 선정된 주중-일요일의 시간변동 요인을 사용하여 판별분석과 신경망을 통한 그룹할당을 했다. 신경망의 적중률이 판별분석의 경우보다 훨씬 좋았고, RMSE. U-test 결과도 더 좋았다. 결과를 전체적으로 살펴보면, 본 연구에서 사용한 방법(월 변동요인만을 사용하여 군집분석 한 후, 각 그룹에서 월별로 요일변동요인을 구해 적용한 AADT 추정)의 결과가 이전 연구인 월변동과 요일변동을 이용한 AADT 추정의 결과보다 훨씬 좋았다. 그리고 그룹할당의 변수를 주중-일요일의 시간변동요인으로 달리하였을 때, 신경망의 경우 그룹할당의 적중률이 더 높아지는 것을 볼 수 있었다.
박지성 선수의 2005년 맨체스터 유나이티드 FC 입단 이후로, 국내에서 프로축구 유니폼 시장이 본격적으로 성장하기 시작했다. 이후, 국내 선수들의 해외 리그에서 활약이 계속되면서 국내에서도 잉글랜드 프리미어리그에 대한 대중의 관심이 지속되고 있다. 이러한 시점에서 본 연구는 국내 프로축구 팬들의 유니폼 소비에 전반적인 소비자 인식을 알아보고, 선수의 영입에 따른 소비자 인식 변화를 비교하고자 했다. EPL의 토트넘에서 활동하고 있는 손흥민 선수의 영입 전후를 중심으로 소셜 미디어에 나타난 프로축구 팬들의 소비자 인식과 구매 요인을 알아보았다. 'EPL 유니폼'을 키워드로, 국내 포털사이트와 소셜 미디어의 게시글을 수집하고, 텍스트 마이닝, SNA, 회귀분석을 사용하여 분석했다. 연구 결과, 첫째, 선수의 소속 팀, 실적, 포지션과 구단의 실적, 순위, 리그의 우승 여부가 프로축구 유니폼의 구매와 탐색에 있어 주요 요인으로 확인되었다. 가격, 디자인, 사이즈, 로고 등과 같은 항목보다 유니폼의 형태, 마킹, 정품 여부, 스폰서와 더 중요하게 작용하고 있었다. 둘째, 구조적 등위성 분석과 군집분석을 통해 국내 프로축구 팬들 사이에서 유니폼과 관련되어 언급되고 있는 주요 주제를 알아본 결과, EPL에 소속된 구단과 유명 선수들이 가장 핵심적인 주제로 나타났다. 셋째, 프로축구 유니폼에 대한 시기별 주제는 월드컵과 EPL 리그에 대한 관심에서 EPL에서 활동하는 다양한 국내외 선수들에 대한 관심으로, 2015년 이후에는 유니폼 자체에 대한 것으로 주제가 변화했다. 이를 통해, 선수들의 이적에 따라 선수가 소속된 해당 구단의 유니폼이 관심을 받고 있음을 알 수 있었다. 넷째, 남녀 소비자 모두 손흥민에 대한 관심이 증가함에 따라서 토트넘이 소속된 리그인 EPL에 대한 관심도 증가하는 것으로 나타났다. 여성의 경우 손흥민에 대한 관심이 증가함에 따라 축구 유니폼에 대해서도 관심을 가지는 것으로 나타난 반면, 남성의 경우 손흥민 선수에 대한 관심과 축구 유니폼에 대한 관심 사이의 관계가 유의하게 나타나지 않았다. 각 구단은 선수와 구단의 성적과 이미지 관리, 스폰서 브랜드 관리에 집중하고, 선수의 이적이 결정되면 선수의 자국에 해당 물량의 공급을 늘리며, 인기를 끌고 있는 선수의 등번호가 부착된 유니폼의 경우에는 여성을 위한 다양한 사이즈를 제공해야 할 필요가 있다.
최근 애드혹 네트워크에서의 모바일 P2P에 대한 관심이 높아지고 있다. 비록 유선 네트워크에서 P2P 알고리즘에 대한 많은 연구가 있었지만, 기존 P2P 프로토콜들은 장치의 이동성을 고려하지 않아 모바일 애드혹 네트워크(MANET, Mobile Ad-hoc Network)에 적합하지 않다. 본 연구에서는 애드혹 네트워크에서 장치의 이동성을 고려하여 클러스터 기반의 새로운 P2P 프로토콜을 제안한다. 기존의 클러스터 기반의 P2P 알고리즘에서 각 클러스터는 슈퍼피어와 슈퍼피어에 자신이 갖고 있는 파일 목록을 등록한 피어들로 구성된다. 이동성이 높은 피어들은 클러스터 간에 자주 핸드오프가 발생하고, 이로 인하여 슈퍼피어에 파일 목록을 등록하기 위한 트래픽이 많이 발생한다. 제안하는 알고리즘에서 이동성이 낮은 피어들은 기존의 클러스터 기반 P2P의 피어들과 동일하게 동작하고, 이동성이 높은 피어들은 다르게 동작한다. 즉 이동성이 높은 피어들은 새로운 클러스터에 참여시, 자신의 존재를 슈퍼피어에게 알리지만 파일 목록을 등록하지는 않으며 파일을 찾고자 할 때 우선 슈퍼피어에 등록된 파일 목록을 검색하고 만약 찾지 못하였을 경우 검색 메시지를 클러스터 내에 전파(broadcast)한다. 본 논문에서 제안 알고리즘을 수학적으로 모델링하고 P2P 트래픽과 라우팅 트래픽에 대한 분석과 최적화를 수행하였고 수학적 모델링 결과에서 제안 알고리즘의 성능이 기존의 클러스터 기반 P2P 알고리즘과 Gnutella 알고리즘에 비해 비슷하거나 더 좋음을 보였다.
In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.
국가 공간정보를 다양한 방법으로 서비스 중인 공간정보 오픈플랫폼은 2012년 서비스 오픈 후 2차원 지도, 3차원 지형, 3차원 건물, 시계열지도 및 각종 주제도 등 지속적으로 다양한 콘텐츠와 서비스를 추가함에 따라 사람들의 관심이 증가하고 있다. 그러나, 공간정보 오픈플랫폼 시스템은 2012년 9월과 2013년 9월에 북한관련 3차원 위성영상 및 백두산 관련 신규 서비스가 추가되면서 사용자 접속의 폭주로 서비스가 중단되는 일이 발생하는 등 시스템의 과도한 부하에 대하여 안정적이지 못한 구조를 가지고 있다. 이는, 신규 콘텐츠 추가나 사용자 접속 증가 등 필요시마다 단순히 서버나 네트워크 장비만을 증설하여 서비스를 수행하였기 때문이다. 이에 본 연구에서는 CDN, 가상화, 클러스터링 등 신기술을 분석하여 방대한 국가 공간정보를 안정적으로 서비스 할 수 있는 새로운 공간정보 오픈플랫폼 아키텍처 구성방안을 제시하고자 한다. 끝으로 본 연구결과는 대용량 공간정보와 다수 사용자를 처리할 수 있는 차세대 공간정보 오픈 플랫폼 아키텍처 수립을 위한 기초 자료로 활용될 수 있을 것으로 기대된다.
최근 우리나라에는 집중호우의 발생 빈도가 잦아지고 있다. 집중호우는 단시간에 발생하여 인명과 재산에 직접적인 피해를 주는 특징이 있다. 이러한 이유로 치수에 대한 관심은 점점 높아지고 있으며 정확한 유량 예측을 바탕으로 홍수에 대비할 수 있는 시스템 개발에 대한 연구가 활발하게 이루어지고 있다. 지금까지 홍수 예보에는 주로 물리적 모형이 사용되어 왔다. 물리적 모형은 매개변수 결정을 위해 많은 자료를 필요로 하고 또 매개변수의 결정 과정에서 많은 불확실성을 포함하고 있기 때문에 계산과정을 거치는 동안 다양한 오차가 반복하여 누적되는 단점이 있다. ANFIS는 인공신경회로망과 퍼지기법을 사용한 자료 지향형 모형으로 기존의 물리적 모형에서 사용한 방대한 양의 물리적 자료를 배제하고 유역의 강우자료와 유량자료만을 사용하여 모형을 구축하고 수위를 예측할 수 있다는 장점이 있다. 그러나 자료 지향형 모형은 입력 자료와 결과 사이의 논리적 상관성을 찾을 수 없다는 단점이 있다. 본 연구에서는 ANFIS 모형에 사용되는 함수의 옵션과 입력자료의 특성의 제한적인 변화에 따른 결과자료 분석을 통해 자료 지향형 모형의 특성을 분석하였다. 또한 일반적으로 많이 사용하는 물리적 모형 중 하나인 HEC-HMS의 유출량 산정 결과와의 비교를 통해 ANFIS의 적용성을 평가하였다. 본 연구는 남한강 상류에 위치한 청미천 유역의 2007년부터 2011년까지의 관측 강우자료와 유량자료를 사용하여 수행하였다.
현재 국내 환경에서의 HF 레이더는 기본적으로 표층해류의 속도와 방위의 측정에 최적화 되어있는 상태이다. 따라서, 이러한 환경하에서 선박을 탐지하는 데에는 큰 환경 잡음과 다수의 오검출로 인하여 기존의 선박 검출 및 추적 기술로는 정밀도에 한계점이 있다. 특히, 국내의 지형환경에 적합한 콤팩트형 HF(High Frequency) 레이더를 선박의 감시에 적용했을 경우에 나타나는 문제점들인 잡음과 간섭으로 인한 원신호 왜곡과 다수의 오검출이 발생하여 성능에 영향을 미치는 것을 극복하기 위한 검출 및 추적 기술이 요구된다. 본 논문에서는 이러한 조건 하에서 적용이 가능한 선박 검출 및 추적 기술을 제안을 하며, 서해에서 운용되고 있는 콤팩트 HF 레이더 사이트에서 획득한 관측 데이터에 적용하여 성능을 평가하였다. 제안된 기법은 선박의 검출에 대한 부분과 검출 결과의 추적에 대한 부분으로 이루어져 있다. 선박의 검출은 CFAR(Constant False Alarm Rate) 기반의 검출기를 활용하였으며, 실제 환경에서 불규칙적으로 획득되는 잡음과 오검출 신호를 줄이기 위한 PCA(Principal Component Analysis) 기반의 부분공간 분리기법을 적용하였다. 또한, 긴 입력 획득 주기(Coherent Processing Interval) 동안에 발생하는 도플러 주파수 변화로 인하여 하나의 선박이 다수의 검출값을 생성하기도 하는데, 이를 결합하기 위한 군집화 기법을 적용하였다. 선박의 검출 결과는 검출에 실패하거나 오검출을 포함시키는 경우도 발생하는데, 이러한 오검출을 줄이기 위한 선박 추적 기법을 적용하였다. 실험 결과에 따르면 제안된 선박 검출 및 추적 기술을 통하여 콤팩트 HF 레이더가 일정 거리에서 선박의 검출 성공율이 우수하다는 것을 확인할 수 있다.
소비자의 소비성향이 필요 품목을 중심으로 근거리에서 구매하는 근린형으로 변화함에 기존의 소매점은 식료품, 생활용품을 위주로 제공하는 슈퍼마켓, 하이퍼마켓 또는 편의점으로 진화하고 있다. 따라서 소매점이 한정된 공간에서 효율적으로 공간을 활용하고 매출을 증대하기 위해서는 소비자의 구매욕을 충족시킬 수 있는 상품배치와 적정한 재고수준을 유지하는 것이 매우 중요하다. 본 연구에서는 소매점의 판매 상품에 대하여 RFM 기반 SOM 군집화를 하여 효율적으로 매장을 관리할 수 있는 상품 배치전략 및 재고전략을 제안하였다. 실제 M마트의 판매데이터를 이용하여 RFM모델을 상품에 적용한 후, 기존 문헌 연구뿐만 아니라 해석 가능성, 응용 가능성 등을 고려하여 3X3 총 9개의 군집으로 분류하여 분석한 결과, 주요 군집으로 R값, F값, M값이 모두 높은 군집, R값, F값, M값 모두 낮은 군집, R값만 높은 군집, F값만 높은 군집이 도출되었다. 본 논문에서는 다른 군집과 비교시 R값, F값, M값이 차이를 보이는 주요 4개의 군집의 상품 배치 및 재고 전략을 제시하였다. R값, F값, M값이 모두 높은 군집의 상품은 소비자 동선을 늘림으로써 상품 노출을 확대시킬 수 있는 장소에 배치하여야 할 뿐만 아니라 높은 수준의 재고를 보유할 필요가 있다. 반면에 R값, F값, M값이 모두 낮은 군집의 상품은 가시성이 낮은 곳에 배치하고 최소한의 안전재고만 보유할 필요가 있다. 또한 R값이 높은 군집은 신상품으로 매장 입구에 배치하여 상품의 판매를 유도할 필요가 있다. 그리고 F값만 높은 군집의 경우, R값과 M값이 평균 값 보다 작은 상품들의 군집이므로 최근에는 판매가 저조하며 빈도 수에 비해 총 판매액이 낮다는 것을 유추할 수 있다. 따라서 현재보다 과거에 많이 판매된 저가의 상품군집으로 재고 수준을 점차 감소시킬 필요가 있다. 본 연구에서 제시한 방법은 POS 시스템의 보유한 소매점에서 상품배치 및 재고관리 방법으로 활용되어 매장의 수익성 증대에 기여할 수 있을 것으로 기대된다.
주식시장에 참여하는 투자자들은 크게 외국인투자자, 기관투자자, 그리고 개인투자자로 구분된다. 외국인투자자 같은 전문투자자 집단은 개인투자자 집단과 비교하여 정보력과 자금력에서 우위를 보이고 있으며, 그 결과 시장 참여자들 사이에는 외국인투자자들이 좋은 투자 성과를 보이는 것으로 알려져 있다. 외국인 투자자들은 근래에는 인공지능을 이용한 투자를 많이 하고 있다. 본 연구의 목적은 투자자별 거래량 정보와 머신러닝을 결합하는 투자전략을 제안하고, 실제 주가와 투자자별 거래량 데이터를 이용하여 제안 모형의 포트폴리오 투자 성과를 분석하는 것이다. 일별 투자자별 매수 수량과 매도 수량 정보는 한국거래소에서 공개하고 있는 자료를 활용하였으며, 여기에 인공신경망을 결합하여 최적의 포트폴리오 전략을 도출하고자 하였다. 본 연구에서는 자기 조직화 지도 모형 인공신경망을 이용하여 투자자별 거래량 데이터를 그룹화하고 그룹화한 데이터를 변환하여 오류역전파 모형을 학습하였다. 학습 후 검증 데이터 예측결과로 매월 포트폴리오 구성을 하도록 개발하였다. 성과 분석을 위해 포트폴리오의 벤치마크를 지정하였고 시장 수익률 비교를 위해 KOSPI200, KOSPI 지수 수익률도 구하였다. 포트폴리오의 동일배분 수익률, 복리 수익률, 연평균 수익률, MDD, 표준편차, 샤프지수, 벤치마크로 지정한 시가총액 상위 10종목의 Buy and Hold 수익률 등을 사용하여 성과 분석을 진행하였다. 분석 결과 포트폴리오가 벤치마크 대비 2배 수익률을 올렸으며 시장 수익률보다 좋은 성과를 보였다. MDD와 표준편차는 포트폴리오와 벤치마크가 비슷한 결과로 성과 대비 비교한다면 포트폴리오가 좋은 성과라고 할 수 있다. 샤프지수도 포트폴리오가 벤치마크와 시장 결과보다 좋은 성과를 내었다. 이를 통해 머신러닝과 투자자별 거래정보 분석을 활용한 포트폴리오 구성 프로그램 개발의 방향을 제시하였고 실제 주식 투자를 위한 프로그램 개발에 활용할 수 있음을 보였다.
세포는 환경 변화 및 자극으로부터 자신을 보호하기 위해 유전자가 발현하여 생명을 유지 시스템을 갖고 있다. 유전자의 발현은 비정상적인 상태의 세포를 환경을 조절, 변화시켜 정상으로 바꾸기 위한 기능, 발달단계에 필요한 기능 등 생명현상에 필요한 특수 역할을 수행한다. 따라서 각 유전자의 기능을 아는 것은 생물학적으로 상당히 의미 있는 일이다. 본 논문에서는 유전자 기능을 알아보기 위해 발현 패턴을 통해 같을 때, 유사한 형태 혹은 시차를 갖고 동일한 형태로 발현하는 유전자들은 같은 기능을 한다는 가정을 하였다. 이 가정에 기반하여 각 유전자들을 기능에 따라 분류하였다. (1) IFSA선형 모델을 적용하여 데이타를 잘 나타내 줄 수 있는 특징 패턴을 찾았으며 (2) 이 특징 패턴으로부터 본 논문에서 제안한 Membership Scoring Function을 이용하여 유전자를 필터링(filtering) 하였다. 이 유전자들은 기존의 ICA(Independent Component Analysis) 방법에서 보다 IFSA 방법이 더 효과적으로 각 기능에 따른 유전자 그룹을 찾아내줌을 GO(Gene Ontology)에서 확인할 수 있었다. 이는 시차 혹은 위상 변화에 상관없이 데이타를 잘 나타낼 수 있는 IFSA의 특성이, ICA보다. 생물학적인 변수를 더 고려해 줄 수 있기 때문이라고 생각된다[1]. 이 논문의 또 다른 주요 작업은 유전자의 상호작용 관계로부터 유전자 네트웍을 얻어내는 것이다. 유전자 네트웍은 같은 그룹 내에서 유전자간의 상관 계수를 구하고 가장 높은 상관도를 보이는 유전자쌍을 연결시켜 얻게되었다. 이 네트웍 역시 GO 해석에서 그 유효성을 확인하였다.를 평균 66.02에서 58.98로 줄이면서 계산시간은 평균 71ms에서 44ms 으로 빠르게 됨을 알 수 있었다.적외선 분광법을 이용한 사일리지의 화학적 조성분 함량 측정은 적은 오차 범위 내에서 신속하고 정확한 분석법이 될 수 있음을 확인 할 수 있었다. 비록 원물 생시료(IF)에 대한 직접적인 측정은 다소 예측 정확성이 떨어지지만 현장 적용성과 편리성을 높이기 위해서는 생시료의 측정시 오차를 줄일 수 있는 스펙트럼의 수처리 방법이나 산란보정 방법과 같은 데이터 처리기법에 대한 더 많은 연구가 앞으로 진행되어야 한다고 생각되어진다.상자의 50% 이상이 매일 생선 콩 및 콩제품과 채소류를 먹고 있었고, 인스턴트나 패스트푸드는 정상 체중군이 저체중군이나 과체중보다 매일 섭취하는 빈도가 낮았다(p<0.0177). 7. 가장 낮은 영양 섭취 상태를 보여준 영양소(% RDA< 75%)는 철분과 칼슘으로 조사 대상자의 3/4에 해당하는 조사 대상자가 영양 부족 상태였다. 칼슘 섭취의 경우 정상 체중군이 과체중군과 저체중군보다 섭취율이 낮았으나(p<0.0257) 철분은 군간 유의차는 없었다. 8. 칼슘의 경우 과체중군이 저체중군이나 정상 체중군에 비해 영양소 적정비율(NAR) 값이 높았으며(p<0.0257) 철분, 단백질, 비타민 $B_1$과 $B_2$, 나이아신의 경우도 통계적으로 유의하지는 않으나 과체중군이 저체중군 또는 정상 체중군의 NAR 값이 높은 경향을 보여주었다. 9가지 영양소의 NAR을 평균한 MAR 값은 군간 유의적이지는 않으나 과체중군(0.76)이 정상체중(0.73) 또는 저체중군(0.73)에 비해 높은 값은 보여주었다. 9.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.