• Title/Summary/Keyword: Network Mining

Search Result 1,053, Processing Time 0.024 seconds

Comprehensive review on Clustering Techniques and its application on High Dimensional Data

  • Alam, Afroj;Muqeem, Mohd;Ahmad, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.237-244
    • /
    • 2021
  • Clustering is a most powerful un-supervised machine learning techniques for division of instances into homogenous group, which is called cluster. This Clustering is mainly used for generating a good quality of cluster through which we can discover hidden patterns and knowledge from the large datasets. It has huge application in different field like in medicine field, healthcare, gene-expression, image processing, agriculture, fraud detection, profitability analysis etc. The goal of this paper is to explore both hierarchical as well as partitioning clustering and understanding their problem with various approaches for their solution. Among different clustering K-means is better than other clustering due to its linear time complexity. Further this paper also focused on data mining that dealing with high-dimensional datasets with their problems and their existing approaches for their relevancy

Comparing Results of Classification Techniques Regarding Heart Disease Diagnosing

  • AL badr, Benan Abdullah;AL ghezzi, Raghad Suliman;AL moqhem, ALjohara Suliman;Eljack, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • Despite global medical advancements, many patients are misdiagnosed, and more people are dying as a result. We must now develop techniques that provide the most accurate diagnosis of heart disease based on recorded data. To help immediate and accurate diagnose of heart disease, several data mining methods are accustomed to anticipating the disease. A large amount of clinical information offered data mining strategies to uncover the hidden pattern. This paper presents, comparison between different classification techniques, we applied on the same dataset to see what is the best. In the end, we found that the Random Forest algorithm had the best results.

Research of Proprioceptive -Vestibular Sensory Integration on Using Big Data Analysis

  • Hye-Sun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.448-454
    • /
    • 2024
  • This study provides academic implications by considering trends of domestic research regarding therapy for sensory integration intervention based on vestibular-proprioceptive system. For the analysis of this study, text mining with the use of R program and social network analysis method have been used and 53 papers have been collected. In conclusion, this study presents significant results as it provided basic rehabilitation data for sensory integration intervention based on vestibular-proprioceptive system through new research methods by analyzing with big data method by proposing the results through visualization from seeking research trends of sensory integration intervention based on vestibular-proprioceptive system through text mining and social network analysis.

Proposing a New Approach for Detecting Malware Based on the Event Analysis Technique

  • Vu Ngoc Son
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.107-114
    • /
    • 2023
  • The attack technique by the malware distribution form is a dangerous, difficult to detect and prevent attack method. Current malware detection studies and proposals are often based on two main methods: using sign sets and analyzing abnormal behaviors using machine learning or deep learning techniques. This paper will propose a method to detect malware on Endpoints based on Event IDs using deep learning. Event IDs are behaviors of malware tracked and collected on Endpoints' operating system kernel. The malware detection proposal based on Event IDs is a new research approach that has not been studied and proposed much. To achieve this purpose, this paper proposes to combine different data mining methods and deep learning algorithms. The data mining process is presented in detail in section 2 of the paper.

Analysis of Smart Tourism Issues Using Social Big Data Analysis

  • Se-won Jeon;Gi-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.300-305
    • /
    • 2024
  • Smart tourism enhances communication between tourists and residents, improves quality of life, increases the utilization of local tourism resources, and helps manage cities efficiently. This paper analyzes recent issues and trends in smart tourism, derives key factors for activating smart tourism based on the analyzed data, and conducts research on promoting smart tourism. Using smart tourism as a keyword, data was collected through Textom. The collection scope included a total of 33,588 pieces of data related to smart tourism over the past year, from May 1, 2023, to May 1, 2024. The data was analyzed using text mining and social network analysis techniques. Through this analysis, the paper suggests directions for the development of smart tourism, enabling the activation of local tourism and effective urban management.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

Analyzing Technological Convergence for IoT Business Using Patent Co-classification Analysis and Text-mining (특허 동시분류분석과 텍스트마이닝을 활용한 사물인터넷 기술융합 분석)

  • Moon, Jinhee;Gwon, Uijun;Geum, Youngjung
    • Journal of Technology Innovation
    • /
    • v.25 no.3
    • /
    • pp.1-24
    • /
    • 2017
  • With the rise of internet of things (IoT), there have been several studies to analyze the technological trend and technological convergence. However, previous work have been relied on the qualitative work that investigate the IoT trend and implication for future business. In response, this study considers the patent information as the proxy measure of technology, and conducts a quantitative and analytic approach for analyzing technological convergence using patent co-classification analysis and text mining. First, this study investigate the characteristics of IoT business, and characterize IoT business into four dimensions: device, network, platform, and services. After this process, total 923 patent classes are classified into four types of IoT technology group. Since most of patent classes are classified into device technology, we developed a co-classification network for both device technology and all technologies. Patent keywords are also extracted and these keywords are also classified into four types: device, network, platform, and services. As a result, technologies for several IoT devices such as sensors, healthcare, and energy management are derived as a main convergence group for the device network. For the total IoT network, base network technology plays a key role to characterize technological convergence in the IoT network, mediating the technological convergence in each application area such as smart healthcare, smart home, and smart grid. This work is expected to effectively be utilized in the technology planning of IoT businesses.

BPAF2.0: Extended Business Process Analytics Format for Mining Process-driven Social Networks (BPAF2.0: 프로세스기반 소셜 네트워크 마이닝을 위한 비즈니스 프로세스 분석로그 포맷의 확장 표준)

  • Jeon, Myung-Hoon;Ahn, Hyun;Kim, Kwang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1509-1521
    • /
    • 2011
  • WfMC, which is one of the international standardization organizations leading the business process and workflow technologies, has been officially released the BPAF1.0 that is a standard format to record process instances' event logs according as the business process intelligence mining technologies have recently issued in the business process and workflow literature. The business process mining technologies consist of two groups of algorithms and their analysis techniques; one is to rediscover flow-oriented process-intelligence, such as control-flow, data-flow, role-flow, and actor-flow intelligence, from process instances' event logs, and the other has something to do with rediscovering relation-oriented process-intelligence like process-driven social networks and process-driven affiliation networks from the event logs. The current standardized format of BPAF1.0 aims at only supporting the control-flow oriented process-intelligence mining techniques, and so it is unable to properly support the relation-oriented process-intelligence mining techniques. Therefore, this paper tries to extend the BPAF1.0 so as to reasonably support the relation-oriented process-intelligence mining techniques, and the extended BPAF is termed BPAF2.0. Particularly, we have a plan to standardize the extended BPAF2.0 as not only the national standard specifications through the e-Business project group of TTA, but also the international standard specifications of WfMC.

A News Video Mining based on Multi-modal Approach and Text Mining (멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝)

  • Lee, Han-Sung;Im, Young-Hee;Yu, Jae-Hak;Oh, Seung-Geun;Park, Dai-Hee
    • Journal of KIISE:Databases
    • /
    • v.37 no.3
    • /
    • pp.127-136
    • /
    • 2010
  • With rapid growth of information and computer communication technologies, the numbers of digital documents including multimedia data have been recently exploded. In particular, news video database and news video mining have became the subject of extensive research, to develop effective and efficient tools for manipulation and analysis of news videos, because of their information richness. However, many research focus on browsing, retrieval and summarization of news videos. Up to date, it is a relatively early state to discover and to analyse the plentiful latent semantic knowledge from news videos. In this paper, we propose the news video mining system based on multi-modal approach and text mining, which uses the visual-textual information of news video clips and their scripts. The proposed system systematically constructs a taxonomy of news video stories in automatic manner with hierarchical clustering algorithm which is one of text mining methods. Then, it multilaterally analyzes the topics of news video stories by means of time-cluster trend graph, weighted cluster growth index, and network analysis. To clarify the validity of our approach, we analyzed the news videos on "The Second Summit of South and North Korea in 2007".

Bitcoin Mining Profitability Model and Analysis (비트코인 채굴 수익성 모델 및 분석)

  • Lee, Jinwoo;Cho, Kookrae;Yum, Dae Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.303-310
    • /
    • 2018
  • Bitcoin (BTC) is a cryptocurrency proposed by Satoshi Nakamoto in 2009. Bitcoin makes its transactions with no central authorities. This decentralization is accomplished with its mining, which is an operation that makes people compete to solve math puzzles to include new transactions into block, and eventually block chains (ledger) of bitcoin. Because miners need to solve a complex puzzles, they need a lot of computing resources. In return for miners' resources, bitcoin network gives newly minted bitcoins as a reward to miners when they succeed in mining. To prevent inflation, the reward is halved every 4 years. For example, in 2009 block reward was 50 BTC, but today, the block reward is 12.5 BTC. On the other hands, exchange rate for bitcoin and Korean Won (KRW) changed drastically from 924,000 KRW/BTC (January 12th, 2017) to 16,103,306 KRW/BTC (December 10th, 2017), which made mining more attractive. However, there are no rigorous researches on the profitability of bitcoin mining. In this paper, we evaluate the profitability of bitcoin mining.