• Title/Summary/Keyword: Network Geometry

Search Result 253, Processing Time 0.031 seconds

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.

Game Theoretic based Distributed Dynamic Power Allocation in Irregular Geometry Multicellular Network

  • Safdar, Hashim;Ullah, Rahat;Khalid, Zubair
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.199-205
    • /
    • 2022
  • The extensive growth in data rate demand by the smart gadgets and mobile broadband application services in wireless cellular networks. To achieve higher data rate demand which leads to aggressive frequency reuse to improve network capacity at the price of Inter Cell Interference (ICI). Fractional Frequency Reuse (FFR) has been recognized as an effective scheme to get a higher data rate and mitigate ICI for perfect geometry network scenarios. In, an irregular geometric multicellular network, ICI mitigation is a challenging issue. The purpose of this paper is to develop distributed dynamic power allocation scheme for FFR based on game theory to mitigate ICI. In the proposed scheme, each cell region in an irregular multicellular scenario adopts a self-less behavior instead of selfish behavior to improve the overall utility function. This proposed scheme improves the overall data rate and mitigates ICI.

Die Shape Design for Cold Forged Products Using the Artificial Neural Network (신경망을 이용한 냉간단조품의 금형형상 설계)

  • Kim, D.J;Kim, T.H;Kim, B.M;Choi, J.C
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.727-734
    • /
    • 1997
  • In practice, the design of forging processes is performed based on an experience-oriented technology, that is designer's experience and expensive trial and errors. Using the finite element simulation and the artificial neural network, we propose an optimal die geometry satisfying the design conditions of final product. A three-layer neural network is used and the back propagation algorithm is employed to train the network. An optimal die geometry that satisfied the same between inner extruded rib and outer extruded one is determined by applying the ability of function approximation of neural network. The neural networks may reduce the number of finite element simulation for determine the optimal die geometry of forging products and further they are usefully applied to physical modelling for the forging design.

A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm (Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

THE USE OF NEURAL NETWORK TECHNOLOGIES TO DETERMINE WELDING

  • Kim, Ill-Soo;Jeong, Young-Jae;Park, Chang-Eun;Sung, Back-Sub;Kim, In-Ju;Son, Jon-Sik;Yarlagadda, Prasad K.D.V.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.301-306
    • /
    • 2002
  • This paper presents the use of the neural network technology to establish a mathematical model for predicting bead geometry (top-bead width, top-bead height, back-bead width and back-bead height) for multi-pass welding, and understand relationships between process parameters and bead geometry for robotic GMA welding process. Using a series of robotic arc welding, additional multi-pass butt welds were carried out in order to verify the performance of the developed neural network model. The results show that not only the proposed model can predict the bead geometry with reasonable accuracy and guarantee the uniform weld quality, but also the neural network model could be better than the linear and curvilin ear equations developed from Lee [8].

  • PDF

Distance Geometry-based Wireless Location Algorithms in Cellular Networks with NLOS Errors

  • Zhao, Junhui;Zhang, Hao;Ran, Rong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2132-2143
    • /
    • 2015
  • This paper presents two distance geometry-based algorithms for wireless location in cellular network systems-distance geometry filtering (DGF) and distance geometry constraint (DGC). With time-of-arrival range measurements, the DGF algorithm estimates the mobile station position by selecting a set of measurements with relatively small NLOS (non-line-of-sight) errors, and the DGC algorithm optimizes the measurements first and then estimates the position using those optimized measurements. Simulation results show that the proposed algorithms can mitigate the impact of NLOS errors and effectively improve the accuracy of wireless location.

The Effect of Network Geometry on Three- Dimensional Analysis in Close-Range Photogrammetry (근접사진측량의 망구성이 삼차원 위치해석에 미치는 영향)

  • 이진덕;강준묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.1
    • /
    • pp.15-22
    • /
    • 1990
  • The purpose of this study is to suggest possibility to analyze the three-dimensional positions of the whole surface of an object simultaneously and precisely by close-range photogrammetry. For this purpose, the geometry of network, namely imaging geometry and control configuration etc was considered, and then the whole surface of the object was analyzed by bundle adjustment through forma. lion of strip and block with which cover the whole surface of the object. As a result, we were able to prove possibility of the whole surface analysis of an object and to extract characteristics of accuracies in accordance with the number and configuration of control points. Also as desirable accuracies were able to be acquired even by employing configuration of only a few control point stationed on a limited surface, it is expected that the difficulties of control surveying will be able to be reduced considerably.

  • PDF

Development of Experimental Model fer Bead profile Prediction in GMA Welding (GMA용접에서 비드단면형상을 예측하기 위한 실험적 모델의 개발)

  • Son Joon-Sik;Kim Ill-Soo;Park Chang-Eun;Kim In-Ju;Jeong Ho-Seong
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.41-47
    • /
    • 2005
  • Generally, the use of robots in manufacturing industry has been increased during the past decade. GMA(Gas Metal Arc) welding process is an actively Vowing area, and many new procedures have been developed for use with high strength alloys. One of the basic requirement for the automatic welding applications is to investigate relationships between process parameters and bead geometry. The objective of this paper is to develop a new approach involving the use of neural network and multiple regression methods in the prediction of bead geometry for GMA welding process and to develop an intelligent system that visualize bead geometry in order to employ the robotic GMA welding processes. Examples of the simulation for GMA welding process are supplied to demonstrate and verify the proposed system developed using MATLAB. The developed system could be effectively implemented not oかy for estimating bead geometry, but also employed to monitor and control the bead geometry in real time.

Performance Approximation of Downlink Multicell Networks Based on Stochastic Geometry (확률 기하 기반 순방향 다중셀 네트워크 성능 근사화)

  • Shin, Guk-Hui;Kwon, Taesoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.989-991
    • /
    • 2017
  • This letter proposes the method for approximating a stochastic geometry based downlink multicell network performance in a wide range of interference and noise levels. This method facilitates the simplification of a multicell network design problem for the base station density and transmit power.

The Kinetography Model - a Mean of Producing Space Scores, Based on Recording Users' Movement in Space

  • Ardelean, Ioana
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.308-312
    • /
    • 2019
  • When one enters a space, perceives the material geometry of that space. Walking inside buildings or across the city is generating a geometry of moving bodies that fills the space. These two geometries coexist: a static geometry of the space and an invisible one of the moving bodies. The space that we actually experience, whether interior or exterior, is a continuous network of voids. Individuals' movement will fill the network of voids that we understand as "the city". Our environment of voids and borders is organized by the means of architecture and urbanism. The geometry generated by motion affects both the limits and the voids, thus space can be defined by the tandem of the moving bodies and their environment. We propose in this study a mean of investigating users' movement and thus understanding the qualities of space while introducing the concept of space scores as analytical maps and design tools.