• 제목/요약/키워드: Network Evaluation

검색결과 3,784건 처리시간 0.033초

서울 청량리 교통섬과 홍릉숲의 미세먼지 특성과 저감효과 평가 (Evaluation of Particulate Matter's Traits and Reduction Effects in Urban Forest, Seoul)

  • 김평래;박찬열
    • 한국환경생태학회지
    • /
    • 제35권5호
    • /
    • pp.569-575
    • /
    • 2021
  • 도심 교통섬과 도시숲 내부에서 미세먼지 농도와 영향 인자를 조사하여 숲의 미세먼지 효과를 분석하였다. 서울시 동대문구 홍릉시험림(도시숲)과 동대문구 청량리역 교차로에 조성된 숲(교통섬)에서 미세먼지 농도를 2018년 1월부터 11월까지 광산란법 기기를 적용하여 측정하였다. 연구 기간 동안 도시숲과 교통섬의 PM10 평균농도는 12.5 ㎍/m3, 15.7 ㎍/m3으로 나타났으며, PM2.5의 평균농도는 6.6 ㎍/m3, 6.9 ㎍/m3으로 나타났다. 환경부 도시대기 측정망과 도시숲의 농도를 비교해본 결과, PM10의 저감율은 도시숲에서 66.9±28.6%, 교통섬에서 58.6±44.1%로 나타났고, PM2.5의 경우 71.3±23.0%, 64.9±31.3%로 각각 나타났다. 미세먼지 저감율의 차이는 도시숲의 규모와 구조의 차이와 관련이 있을 것이며, 풍속은 저감 요인으로 판단된다.

A study on the impact of homestay sharing platform on guests' online comment willingness

  • Zou, Ji-Kai;Liang, Teng-Yue;Dong, Cui
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.321-331
    • /
    • 2020
  • 본 논문의 연구 목적은 공유숙박 비즈니스 바탕으로 숙박 플랫폼이 세입자의 온라인 리뷰 의향에 미치는 영향을 연구하는 것이다. 기존 숙박예약 모델보다 공유숙박 중 숙박 플랫품, 집주인, 세입자 간을 공유하는 독립성이 더 명확하다. 공유숙박 플랫폼은 집주인과 세입자간의 오프라인 숙박서비스를 완료하고 거래를 실현할 수 있도록 다양한 지원 서비스를 제공하는 것은 물론, 공유숙박 플랫폼은 세입자가 집주인에게 객관적이고 적극적으로 평가하도록 장려하는 특정 조치를 파악해야 한다. 공유숙박에 대한 신용 생태를 더 잘 확립할 수 있도록 필요하다. 본 논문에서는 공유숙박 플랫폼을 사용해본적 있는 소비자들을 대상으로, 2주간의 설문 조사를 하고 SPSS24.0 프로그램을 사용하여 데이터가 분석되었다. 이 논문의 연구결과는: (1) 플랫폼 리뷰 기능의 사용 용이성, 세입자의 만족도 및 플랫폼 리뷰 인센티브가 세입자의 온라인 리뷰 의향에 긍정적인 영향을 미친다. (2) 플랫폼의 신용 메커니즘은 세입자의 만족도가 온라인 리뷰 의향에 영향을 미치는 과정에서 긍정적인 영향을 미친다.

MLP 기반의 서울시 3차원 지반공간모델링 연구 (MLP-based 3D Geotechnical Layer Mapping Using Borehole Database in Seoul, South Korea)

  • 지윤수;김한샘;이문교;조형익;선창국
    • 한국지반공학회논문집
    • /
    • 제37권5호
    • /
    • pp.47-63
    • /
    • 2021
  • 최근 디지털 트윈 관점의 3차원 지하공간 지도의 수요 및 유관분야의 연계 활용 요구가 증대되고 있다. 그러나 전국단위의 지반조사 자료의 방대함과 이를 활용함에 있어 공간적/추계학적 기법 적용의 불확실성으로 인해 신뢰도 높은 지역적 지반특성화 연구와 그에 따른 최적화 모델 제시에 어려움이 있다. 따라서 본 연구에서는 서울지역 3차원 지하공간의 공학적 지층분류를 위해 다층 퍼셉트론(MLP) 기반의 최적 학습모델을 구축하였다. 먼저, 서울지역에 분포하는 시추공별 층상구조 및 3차원 공간좌표를 표준화 서식에 따라 지반정보 데이터베이스로 구축하고 기계학습을 위한 결측치 보정, 정규화 등의 데이터 전처리를 하였다. MLP 모델의 파라미터 최적화와 정밀도 및 정확도 관련 모델 성능 평가를 통해 최적의 피팅 모델을 설계하였다. 이후 3차원 지반 공간레이어 구축을 위한 수치표고모델 기반 격자망을 구성하고, 단위격자별 MLP기반 예측모델 적용을 통한 층상구조를 결정하고 이를 가시화하였다. 구축된 3차원 지반모델은 범용적인 지구통계학적 공간보간 기법의 적용 결과 및 지질도의 표토층 성상과 비교하여 그 성능을 평가하였다.

그린인프라 구축을 위한 개발제한구역의 활용가치: 대전광역시를 중심으로 (The Utilization Value of Greenbelts as Green Infrastructure: A Case Study of the Daejeon Metropolitan Area)

  • 최재혁;임병호;이시영
    • 토지주택연구
    • /
    • 제13권1호
    • /
    • pp.67-84
    • /
    • 2022
  • 본 연구는 지리정보시스템(GIS)을 이용한 분석 결과를 기존의 방식이 아닌 그린인프라적 관점에서 해석하여 결과를 도출하고, 이를 바탕으로 개발제한구역을 그린인프라 네트워크에 어떻게 활용하여 연결시키는 것이 바람직한지 알아봄으로써 개발제한구역의 활용가치를 밝혀보는데 목적이 있다. 본 연구의 결과로 개발제한구역에 대한 그린인프라 네트워크 구성의 적정성 측면에서, 공간구조와 주변지역과의 광역적 연결성 등을 바탕으로 한 결론은 다음과 같다. 첫째, 대전권 개발제한구역에서 가장 이슈가 되는 공간은 유성구에 존재하며, 이는 2000년대 초부터 시작된 주택개발을 위해 개발구역을 해제하면서 발생한 문제이다. 따라서 정확한 환경평가를 통해 개발제한구역을 추가로 해제할 것인지 아니면 녹지를 복원하여 그린인프라 네트워크 구성에 대한 새로운 방향을 제시할 것인지 정책적 판단이 필요하다. 둘째, 남북으로 연결되고 있는 대도시들의 축이 전체 충청권의 녹지축뿐만 아니라 대전권 개발제한구역과 주변지자체의 개발에도 영향을 미칠 것으로 판단되므로 이러한 경향을 반영한 개발제한구역 조정안을 마련할 필요성 있다. 셋째, 개발제한구역의 강력한 집행으로 인해 주변 도시들의 인접부에 개발 압력이 증가하는 추세이고, 이중 북쪽으로는 세종시 남쪽으로는 논산 쪽이 주요 개발 타겟이 될 것으로 판단되므로 이에 대한 대책을 수립할 필요가 있다. 넷째, 개발제한구역을 해제하거나 보전하는 양면적 접근보다 기존의 평가기준에 그린인프라적 가치를 추가하여 종합적인 광역계획과 연동된 방향설정이 필요할 것이다.

서울시 구로구에서 COVID-19 발생 전·후 초미세먼지(PM2.5) 농도 변화에 따른 인구집단 노출평가 (Evaluation of Population Exposures to PM2.5 before and after the Outbreak of COVID-19)

  • 김동준;민기홍;최영태;신준섭;우재민;김동준;신정현;조만수;성경화;최윤형;이채관;최길용;양원호
    • 한국환경보건학회지
    • /
    • 제47권6호
    • /
    • pp.521-529
    • /
    • 2021
  • Background: The coronavirus disease (COVID-19) has caused changes in human activity, and these changes may possibly increase or decrease exposure to fine dust (PM2.5). Therefore, it is necessary to evaluate the exposure to PM2.5 in relation to the outbreak of COVID-19. Objectives: The purpose of this study was to compare and evaluate the exposure to PM2.5 concentrations by the variation of dynamic populations before and after the outbreak of COVID-19. Methods: This study evaluated exposure to PM2.5 concentrations by changes in the dynamic population distribution in Guro-gu, Seoul, before and after the outbreak of COVID-19 between Jan and Feb, 2020. Gurogu was divided into 2,204 scale standard grids of 100 m×100 m. Hourly PM2.5 concentrations were modeled by the inverse distance weight method using 24 sensor-based air monitoring instruments. Hourly dynamic population distribution was evaluated according to gender and age using mobile phone network data and time-activity patterns. Results: Compared to before, the population exposure to PM2.5 decreased after the outbreak of COVID-19. The concentration of PM2.5 after the outbreak of COVID-19 decreased by about 41% on average. The variation of dynamic population before and after the outbreak of COVID-19 decreased by about 18% on average. Conclusions: Comparing before and after the outbreak of COVID-19, the population exposures to PM2.5 decreased by about 40%. This can be explained to suggest that changes in people's activity patterns due to the outbreak of COVID-19 resulted in a decrease in exposure to PM2.5.

인공 신경망 알고리즘을 활용한 플라이애시 콘크리트의 염해 내구성능 예측 (The Prediction of Durability Performance for Chloride Ingress in Fly Ash Concrete by Artificial Neural Network Algorithm)

  • 권성준;윤용식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.127-134
    • /
    • 2022
  • 본 연구에서는 장기재령(4~6년)으로 양생된 플라이애시 콘크리트를 대상으로 촉진 염화물 이온 통과 시험을 수행하였다. 콘크리트 배합은 3수준의 물-결합재 비(0.37, 0.42, 0.47)와 2수준의 플라이애시 치환율(0, 30 %)을 가지고 있었으며, 시간 의존적으로 개선되는 통과 전하량을 정량적으로 분석하였다. 또한 실험결과를 GRU 알고리즘을 고려한 단별량 시계열 모델을 적용하여 학습하였으며, 그 예측값을 평가하였다. 통과전하량 실험 결과, 플라이애시 콘크리트는 물-결합재 비에 의한 통과 전하량의 변화가 재령이 증가함에 따라 점차 감소하였으며 OPC 콘크리트에 비하여 우수한 염해저항성을 나타내었다. 최종 평가일인 6년에서 플라이애시 콘크리트는 모든 물 결합재 비 조건에서 'Very low' 등급에 해당되는 통과 전하량이 평가되었지만, OPC 콘크리트의 경우 가장 높은 물-결합재 비를 갖는 조건에서 'Moderate' 등급을 나타내었다. 메인 알고리즘으로서 사용한 GRU 알고리즘은 시계열 데이터를 분석할 수 있고 연산 속도가 빠른 장점을 갖고 있다. 4개의 은닉층을 갖는 딥-러닝 모델이 고려되었으며 결과값은 실험값을 합리적으로 예측하고 있었다. 본 연구의 딥-러닝 모델은 단변량 시계열 특성만을 고려할 수 있는 한계점이 존재하지만 추가 연구를 통해 콘크리트의 강도 및 확산계수와 같은 다양한 특성을 고려할 수 있는 모델이 개발 중에 있다.

Model Inversion Attack: Analysis under Gray-box Scenario on Deep Learning based Face Recognition System

  • Khosravy, Mahdi;Nakamura, Kazuaki;Hirose, Yuki;Nitta, Naoko;Babaguchi, Noboru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.1100-1118
    • /
    • 2021
  • In a wide range of ML applications, the training data contains privacy-sensitive information that should be kept secure. Training the ML systems by privacy-sensitive data makes the ML model inherent to the data. As the structure of the model has been fine-tuned by training data, the model can be abused for accessing the data by the estimation in a reverse process called model inversion attack (MIA). Although, MIA has been applied to shallow neural network models of recognizers in literature and its threat in privacy violation has been approved, in the case of a deep learning (DL) model, its efficiency was under question. It was due to the complexity of a DL model structure, big number of DL model parameters, the huge size of training data, big number of registered users to a DL model and thereof big number of class labels. This research work first analyses the possibility of MIA on a deep learning model of a recognition system, namely a face recognizer. Second, despite the conventional MIA under the white box scenario of having partial access to the users' non-sensitive information in addition to the model structure, the MIA is implemented on a deep face recognition system by just having the model structure and parameters but not any user information. In this aspect, it is under a semi-white box scenario or in other words a gray-box scenario. The experimental results in targeting five registered users of a CNN-based face recognition system approve the possibility of regeneration of users' face images even for a deep model by MIA under a gray box scenario. Although, for some images the evaluation recognition score is low and the generated images are not easily recognizable, but for some other images the score is high and facial features of the targeted identities are observable. The objective and subjective evaluations demonstrate that privacy cyber-attack by MIA on a deep recognition system not only is feasible but also is a serious threat with increasing alert state in the future as there is considerable potential for integration more advanced ML techniques to MIA.

CNN 은닉층 증가에 따른 인공지능 정확도 평가: 뇌출혈 CT 데이터 (Evaluation of Artificial Intelligence Accuracy by Increasing the CNN Hidden Layers: Using Cerebral Hemorrhage CT Data)

  • 김한준;강민지;김은지;나용현;박재희;백수은;심수만;홍주완
    • 한국방사선학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2022
  • 딥러닝은 다량의 데이터 속에서 핵심적인 내용을 요약해 학습하는 알고리즘의 집합으로 의료영상 분야에서 병변을 진단하는 목적으로 사용되기 위해 발전하고 있다. 본 논문에서는 뇌출혈 진단 정확성을 평가하기 위해 CNN을 이용해 뇌실질 CT 영상과 뇌출혈이 의심되는 뇌실질 CT의 진단 정확도를 도출하였다. 은닉층 수에 따른 정확도를 비교한 결과 은닉층이 증가할수록 정확도가 높아졌다. 본 연구에서 도출된 CT 뇌출혈 유무 분석 결과는 앞으로 의료영상 분야와 인공지능 접목에 관한 연구에서 기초 자료로 사용될 것으로 사료된다.

가변 길이 입력 발성에서의 화자 인증 성능 향상을 위한 통합된 수용 영역 다양화 기법 (Integrated receptive field diversification method for improving speaker verification performance for variable-length utterances)

  • 신현서;김주호;허정우;심혜진;유하진
    • 한국음향학회지
    • /
    • 제41권3호
    • /
    • pp.319-325
    • /
    • 2022
  • 화자 인증 시스템에서 입력 발성 길이의 변화는 성능을 하락시킬 수 있는 대표적인 요인이다. 이러한 문제점을 개선하기 위해, 몇몇 연구에서는 시스템 내부의 특징 가공 과정을 여러가지 서로 다른 경로에서 수행하거나 서로 다른 수용 영역(Receptive Field)을 가진 합성곱 계층을 활용하여 다양한 화자 특징을 추출하였다. 이러한 연구에 착안하여, 본 연구에서는 가변 길이 입력 발성을 처리하기 위해 보다 다양한 수용 영역에서 화자 정보를 추출하고 이를 선택적으로 통합하는 통합된 수용 영역 다양화 기법을 제안한다. 제안한 통합 기법은 입력된 특징을 여러가지 서로 다른 경로에서 다른 수용 영역을 가진 합성곱 계층으로 가공하며, 가공된 특징을 입력 발성의 길이에 따라 동적으로 통합하여 화자 특징을 추출한다. 본 연구의 심층신경망은 VoxCeleb2 데이터세트로 학습되었으며, 가변 길이 입력 발성에 대한 성능을 확인하기 위해 VoxCeleb1 평가 데이터 세트를 1 s, 2 s, 5 s 길이로 자른 발성과 전체 길이 발성에 대해 각각 평가를 수행하였다. 실험 결과, 통합된 수용 영역 다양화 기법이 베이스라인 대비 동일 오류율을 평균적으로 19.7 % 감소시켜, 제안한 기법이 가변 길이 입력 발성에 의한 성능 저하를 개선할 수 있음을 확인하였다.

지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상 (Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of ground water level)

  • 이원진;이의훈
    • 한국수자원학회논문집
    • /
    • 제55권11호
    • /
    • pp.903-911
    • /
    • 2022
  • 물을 공급하기 위한 자원 중 하나인 지하수는 다양한 자연적 요인에 의해 수위의 변동이 발생한다. 최근, 인공신경망을 이용하여 지하수위의 변동을 예측하는 연구가 진행되었다. 기존에는 인공신경망 연산자 중 학습에 영향을 미치는 Optimizer로 경사하강법(Gradient Descent, GD) 기반 Optimizer를 사용하였다. GD 기반 Optimizer는 초기 상관관계 의존성과 해의 비교 및 저장 구조 부재의 단점이 존재한다. 본 연구는 GD 기반 Optimizer의 단점을 개선하기 위해 GD와 화음탐색법(Harmony Search, HS)를 결합한 새로운 Optimizer인 Gradient Descent combined with Harmony Search(GDHS)를 개발하였다. GDHS의 성능을 평가하기 위해 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용하여 이천율현 관측소의 지하수위를 학습 및 예측하였다. GD 및 GDHS를 사용한 MLP의 성능을 비교하기 위해 Mean Squared Error(MSE) 및 Mean Absolute Error(MAE)를 사용하였다. 학습결과를 비교하면, GDHS는 GD보다 MSE의 최대값, 최소값, 평균값 및 표준편차가 작았다. 예측결과를 비교하면, GDHS는 GD보다 모든 평가지표에서 오차가 작은 것으로 평가되었다.