• 제목/요약/키워드: Network Depth

Search Result 819, Processing Time 0.03 seconds

Application of Artificial Neural Network for estimation of daily maximum snow depth in Korea (우리나라에서 일최심신적설의 추정을 위한 인공신경망모형의 활용)

  • Lee, Geon;Lee, Dongryul;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.681-690
    • /
    • 2017
  • This study estimated the daily maximum snow depth using the Artificial Neural Network (ANN) model in Korean Peninsula. First, the optimal ANN model structure was determined through the trial-and-error approach. As a result, daily precipitation, daily mean temperature, and daily minimum temperature were chosen as the input data of the ANN. The number of hidden layer was set to 1 and the number of nodes in the hidden layer was set to 10. In case of using the observed value as the input data of the ANN model, the cross validation correlation coefficient was 0.87, which is higher than that of the case in which the daily maximum snow depth was spatially interpolated using the Ordinary Kriging method (0.40). In order to investigate the performance of the ANN model for estimating the daily maximum snow depth of the ungauged area, the input data of the ANN model was spatially interpolated using Ordinary Kriging. In this case, the correlation coefficient of 0.49 was obtained. The performance of the ANN model in mountainous areas above 200m above sea level was found to be somewhat lower than that in the rest of the study area. This result of this study implies that the ANN model can be used effectively for the accurate and immediate estimation of the maximum snow depth over the whole country.

Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution

  • Ruiz, Christian C.;Caballero, Jose L.;Martinez, Juan H.;Aperador, Willian A.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.257-265
    • /
    • 2020
  • Many failures of concrete structures are related to steel corrosion. For this reason, it is important to recognize how the carbonation can affect the durability of reinforced concrete structures. The repeatability of the carbonation depth measure in a specimen of concrete sprayed with a phenolphthalein solution is consistently low whereby it is necessary to have an impartial method to measure the carbonation depth. This study presents two automatic algorithms to detect the non-carbonated zone in concrete specimens. The first algorithm is based solely on digital processing image (DPI), mainly morphological and threshold techniques. The second algorithm is based on artificial intelligence, more specifically on an array of Kohonen networks, but also using some DPI techniques to refine the results. Moreover, another algorithm was developed with the purpose of measure the carbonation depth from the image obtained previously.

Design of the Fuzzy Sliding Mode Controller and Neural Network Interpolator for UFV Depth Control

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.2-176
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over nonlinear characteristics. Second, it needs accurate performance which have small overshoot phenomenon and steady state error. Third, it needs continuous control input. Finally, it needs interpolation method which can solve the speed dependency problem of controller parameters. To solve these problems, we propose adepth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Optimal Inner Case Design for Refrigerator by Utilizing Artificial Neural Networks and Genetic Algorithm

  • Zhai, Jianguang;Cho, Jong-Rae;Roh, Min-Shik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.971-980
    • /
    • 2010
  • In this paper, an artificial neural network (ANN) was employed to build a predicting model for refrigerator structure. The predicting model includes three input variables of the plaque depth (D), width (W) and interval distance(S) on the inner wall. Finite element method was utilized to obtain the data, which would be necessary for the ANN training process. Finally, a genetic algorithm (GA) was applied to find the optimal parameters that leaded to the minimum inner case deformation under operating condition. The optimal combination found is the depth(D) of 2.63mm, the width(W) of 19.24mm and the interval distance(S) of 49.38mm which leaded to the smallest deformation of 1.88mm for the given refrigerator model.

A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network

  • Abolbashari, Mohammad Hossein;Nazari, Foad;Rad, Javad Soltani
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.299-313
    • /
    • 2014
  • In the first part of this paper, the influences of some of crack parameters on natural frequencies of a cracked cantilever Functionally Graded Beam (FGB) are studied. A cantilever beam is modeled using Finite Element Method (FEM) and its natural frequencies are obtained for different conditions of cracks. Then effect of variation of depth and location of cracks on natural frequencies of FGB with single and multiple cracks are investigated. In the second part, two Multi-Layer Feed Forward (MLFF) Artificial Neural Networks (ANNs) are designed for prediction of FGB's Cracks' location and depth. Particle Swarm Optimization (PSO) and Back-Error Propagation (BEP) algorithms are applied for training ANNs. The accuracy of two training methods' results are investigated.

Predicting shear strength of SFRC slender beams without stirrups using an ANN model

  • Keskin, Riza S.O.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.605-615
    • /
    • 2017
  • Shear failure of reinforced concrete (RC) beams is a major concern for structural engineers. It has been shown through various studies that the shear strength and ductility of RC beams can be improved by adding steel fibers to the concrete. An accurate model predicting the shear strength of steel fiber reinforced concrete (SFRC) beams will help SFRC to become widely used. An artificial neural network (ANN) model consisting of an input layer, a hidden layer of six neurons and an output layer was developed to predict the shear strength of SFRC slender beams without stirrups, where the input parameters are concrete compressive strength, tensile reinforcement ratio, shear span-to-depth ratio, effective depth, volume fraction of fibers, aspect ratio of fibers and fiber bond factor, and the output is an estimate of shear strength. It is shown that the model is superior to fourteen equations proposed by various researchers in predicting the shear strength of SFRC beams considered in this study and it is verified through a parametric study that the model has a good generalization capability.

Estimation of Hardened Layer Dimensions Using Multi-Point Temperature Monitoring in Laser Surface Hardening Processes (레이저 표면 경화 공정에서 다점 온도 모니터링을 통한 경화층 크기 예측)

  • 우현구
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1048-1054
    • /
    • 2003
  • In laser surface hardening processes, the geometrical parameters such as the depth and the width of a hardened layer can be utilized to assess the hardened layer quality. However, accurate monitoring of the geometrical parameters for on-line process control as well as for on-line quality evaluation is very difficult because the hardened layer is formed beneath a material surface and is not visible. Therefore, temperature monitoring of a point of specimen surface has most frequently been used as a process monitoring method. But, a hardened layer depends on the temperature distribution and the thermal history of a specimen during laser surface hardening processing. So, this paper describes the estimation results of the geometric parameters using multi-point surface temperature monitoring. A series of hardening experiments were performed to find the relationships between the geometric parameters and the measured temperature. Estimation results using a neural network show the enhanced effectiveness of multi-point surface temperature monitoring compared to one-point monitoring.

Error Performance Analysis of a FEC for the Cable Modem (유선 케이블 모뎀의 FEC 성능평가)

  • 이창재;김경덕;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1803-1811
    • /
    • 2001
  • In this paper, Forward Error Correction(FEC) that is satisfied with ITU-T Recommendation J.83, Annex B(North American Data Over Cable Service Interface Specifications(DOCSIS) for Multimedia Cable Network System(MCNS)) is analyzed. The FEC consist of Reed-Solomon(RS) layer, interleaving layer, randomization layer, and trellis coded modulation(TCM) layer. The effects of quantization of input symbol and of trace-back depth in the Viterbi decoder are simulated over AWGN channels.

  • PDF

Crack Identification Using Hybrid Neuro-Genetic Technique (인공신경망 기법과 유전자 기법을 혼합한 결함인식 연구)

  • Suh, Myung-Won;Shim, Mun-Bo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.158-165
    • /
    • 1999
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.

  • PDF

Prediction of Wave Breaking Using Machine Learning Open Source Platform (머신러닝 오픈소스 플랫폼을 활용한 쇄파 예측)

  • Lee, Kwang-Ho;Kim, Tag-Gyeom;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.4
    • /
    • pp.262-272
    • /
    • 2020
  • A large number of studies on wave breaking have been carried out, and many experimental data have been documented. Moreover, on the basis of various experimental data set, many empirical or semi-empirical formulas based primarily on regression analysis have been proposed to quantitatively estimate wave breaking for engineering applications. However, wave breaking has an inherent variability, which imply that a linear statistical approach such as linear regression analysis might be inadequate. This study presents an alternative nonlinear method using an neural network, one of the machine learning methods, to estimate breaking wave height and breaking depth. The neural network is modeled using Tensorflow, a machine learning open source platform distributed by Google. The neural network is trained by randomly selecting the collected experimental data, and the trained neural network is evaluated using data not used for learning process. The results for wave breaking height and depth predicted by fully trained neural network are more accurate than those obtained by existing empirical formulas. These results show that neural network is an useful tool for the prediction of wave breaking.