As the cyber-attacks through the networks advance, it is difficult for the intrusion detection system based on the simple rules to detect the novel type of attacks such as Advanced Persistent Threat(APT) attack. At present, many types of research have been focused on the application of machine learning techniques to the intrusion detection system in order to detect previously unknown attacks. In the case of using the machine learning techniques, the performance of the intrusion detection system largely depends on the feature set which is used as an input to the system. Generally, more features increase the accuracy of the intrusion detection system whereas they cause a problem when fast responses are required owing to their large elapsed time. In this paper, we present a network intrusion detection system based on artificial neural network, which adopts a multi-objective genetic algorithm to satisfy the both requirements: accuracy, and fast response. The comparison between the proposing approach and previously proposed other approaches is conducted against NSL_KDD data set for the evaluation of the performance of the proposing approach.
KIPS Transactions on Software and Data Engineering
/
v.4
no.9
/
pp.425-430
/
2015
The Sensor Registry System(SRS) provides sensor metadata to a user for instant use and seamless interpretation of sensor data in a heterogeneous sensor network environment. The existing sensor registry system cannot provide sensor metadata in case that the network connection is not available or is unstable. To resolve the problem, this paper proposes an extension of sensor registry system using network coverage information. The extended system sends a set of sensor metadata to the user by using network coverage open data (mobile vendors, signal strength, communication type). The extended SRS proposed in this paper supports a safer sensor metadata provision than the existing SRS, and it thus improves the quality of application services.
Park, Rae-Jin;Kang, Sungwoo;Lee, Jaehyeong;Jung, Seungmin
New & Renewable Energy
/
v.18
no.2
/
pp.18-25
/
2022
In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.
A digital hologram (DH) is an ultra-high value-added video content that includes 3D information in 2D data. Therefore, its intellectual property rights must be protected for its distribution. For this, this paper proposes a watermarking method of DH using a deep neural network. This method is a watermark (WM) invisibility, attack robustness, and blind watermarking method that does not use host information in WM extraction. The proposed network consists of four sub-networks: pre-processing for each of the host and WM, WM embedding watermark, and WM extracting watermark. This network expand the WM data to the host instead of shrinking host data to WM and concatenate it to the host to insert the WM by considering the characteristics of a DH having a strong high frequency component. In addition, in the training of this network, the difference in performance according to the data distribution property of DH is identified, and a method of selecting a training data set with the best performance in all types of DH is presented. The proposed method is tested for various types and strengths of attacks to show its performance. It also shows that this method has high practicality as it operates independently of the resolution of the host DH and WM data.
There have been active research activities to use neural networks to analyze OCT images and make medical decisions. One requirement for these approaches to be promising solutions is that the trained network must be generalized to new devices without a substantial loss of performance. In this paper, we use a deep convolutional neural network to distinguish AMD from normal patients. The network was trained using a data set generated from an OCT device. We observed a significant performance degradation when it was applied to a new data set obtained from a different OCT device. To overcome this performance degradation, we propose an image normalization method which performs segmentation of OCT images to identify the retina area and aligns images so that the retina region lies horizontally in the image. We experimentally evaluated the performance of the proposed method. The experiment confirmed a significant performance improvement of our approach.
Han Seongil;Lee Daesik;Han Jihwan;Moon Hhyunjin;Lim Changmin;Lee Sangku
Journal of Korea Society of Digital Industry and Information Management
/
v.19
no.2
/
pp.69-78
/
2023
In this paper, IO+5G dedicated hardware is developed and an AI device communication system equipped with a 5G is designed and tested. The AI device communication system equipped with a 5G receives the collected real-time images and the information collected from the IoT sensor in real time is to analyze the information and generates the risk detection events in the AI processing board. The event generated in the AI processing board creates a 5G channel in the dedicated hardware equipped with IO+5G. The created 5G channel delivers event video to the control video server. The 5G based dongle network enables faster data collection and more precise data measurement compared to wireless LAN and 5G routers. As a result of the experiment in this paper, the average test result of the 5G dongle network is about 51% faster than the Wi-Fi average test result in downlink and about 40% faster in uplink. In addition, when comparing the test result with terms of the 5G rounter to be set to 80% upload and 20% download, the average test result is that the 5G dongle network is about 11.27% faster when downloading and about 17.93% faster when uploading. when comparing the test result with terms of the the router to be set to 60% upload and 40% download, the 5G dongle network is about 11.19% faster when downlinking and about 13.61% faster when uplinking. Therefore, in this paper it describes that the developed 5G dongle network can improve the results by collecting data and analyzing it faster than wireless LAN and 5G routers.
Purpose: This study purposed to analyze the spatial accessibility of mental health institutions in Ganwon-Do using Geographic Information System and to suggest policy implications. Methodology: Network analysis was applied to assess the spatial accessibility of mental health institutions in Gangwon-Do. To perform the network analysis, network data set was built using administrative district map, road network, address of mental health institutions in Gangwon-Do. After building network data set, Two network analysis methods, 1) Service area analysis, 2) Origin Destination cost matrix were applied. Service area analysis calculated accessive areas that were within specified time. And using Origin Destination cost matrix, travel time and road travel distance were calculated between centroids of Eup, Myeon, Dong and the nearest mental health institutions. Result: After the service area analysis, it is estimated that 19.63% of the total areas in Gangwon-Do takes more than 60 minutes to get to clinic institutions. For hospital institutions, 23.08% of the total areas takes more than 60 minutes to get there. And 59.96% of Gangwon-do takes more than 30 minutes to get to general hospitals. The result of Origin-Destination cost matrix showed that most Eup Myeon Dong in Gangwon-Do was connected to the institutions in Wonju-si, Chuncheon-si, Gangneung-si. And it showed that there were large regional variation in time and distance to reach the institutions. Implication: Results showed that there were regional variations of spatial accessibility to the mental health institutions in Gangwon-Do. To solve this problem, Several policy interventions could be applied such as mental health resources allocation plan, telemedicine, providing more closely coordinated services between mental health institutions and community mental health centers to enhance the accessibility.
In order to provide realistic traffic to the cyber warfare training system, it is necessary to prepare a traffic distribution plan in advance and to create a training data set using normal/threat data sets. This paper presents the design and implementation results of a method for creating a traffic distribution plan and a training data set to provide background traffic like a real environment to a cyber warfare training system. We propose a method of a traffic distribution plan by using the network topology of the training environment to distribute traffic and the traffic attribute information collected in real and simulated environments. We propose a method of generating a training data set according to a traffic distribution plan using a unit traffic and a mixed traffic method using the ratio of the protocol. Using the implemented tool, a traffic distribution plan was created, and the training data set creation result according to the distribution plan was confirmed.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.170-170
/
2020
Due to the development of technologies, complex computation of huge data set is possible with a prevalent personal computer. Therefore, machine learning methods have been widely applied in the hydrologic field such as regression-based regional frequency analysis (RFA). The main purpose of this study is to compare two frameworks of RFA based on the artificial neural network (ANN) models: quantile regression technique (QRT-ANN) and parameter regression technique (PRT-ANN). As an output layer of the ANN model, the QRT-ANN predicts quantiles for various return periods whereas the PRT-ANN provides prediction of three parameters for the generalized extreme value distribution. Rainfall gauging sites where record length is more than 20 years were selected and their annual maximum rainfalls and various hydro-meteorological variables were used as an input layer of the ANN model. While employing the ANN model, 70% and 30% of gauging sites were used as training set and testing set, respectively. For each technique, ANN model structure such as number of hidden layers and nodes was determined by a leave-one-out validation with calculating root mean square error (RMSE). To assess the performances of two frameworks, RMSEs of quantile predicted by the QRT-ANN are compared to those of the PRT-ANN.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.4
/
pp.491-498
/
2003
The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using FCM(Fuzzy Cognitive Maps) that can detect intrusion by the DoS attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The SPuF(Syn flooding Preventer using Fussy cognitive maps) model captures and analyzes the packet informations to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance comparison, the "KDD′99 Competition Data Set" made by MIT Lincoln Labs was used. The result of simulating the "KDD′99 Competition Data Set" in the SPuF model shows that the probe detection rates were over 97 percentages.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.