• Title/Summary/Keyword: Network Benefit

Search Result 377, Processing Time 0.024 seconds

A Study of TRM and ATC Determination for Electricity Market Restructuring (전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구)

  • 이효상;최진규;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.

Relay Assignment in Cooperative Communication Networks: Distributed Approaches Based on Matching Theory

  • Xu, Yitao;Liu, Dianxiong;Ding, Cheng;Xu, Yuhua;Zhang, Zongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5455-5475
    • /
    • 2016
  • In this article, we model the distributed relay assignment network as a many-to-one matching market with peer effects. We discuss two scenarios for throughput optimization of relay networks: the scenario of aggregate throughput optimization and the scenario of fairness performance optimization. For the first scenario, we propose a Mutual Benefit-based Deferred Acceptance (MBDA) algorithm to increase the aggregate network throughput. For the second scenario, instead of using the alternative matching scheme, a non-substitution matching algorithm (NSA) is designed to solve the fairness problem. The NSA improves the fairness performance. We prove that both two algorithms converge to a globally stable matching, and discuss the practical implementation. Simulation results show that the performance of MBDA algorithm outperforms existing schemes and is almost the same with the optimal solution in terms of aggregate throughput. Meanwhile, the proposed NSA improves fairness as the scale of the relay network expands.

SOCMTD: Selecting Optimal Countermeasure for Moving Target Defense Using Dynamic Game

  • Hu, Hao;Liu, Jing;Tan, Jinglei;Liu, Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4157-4175
    • /
    • 2020
  • Moving target defense, as a 'game-changing' security technique for network warfare, realizes proactive defense by increasing network dynamics, uncertainty and redundancy. How to select the best countermeasure from the candidate countermeasures to maximize defense payoff becomes one of the core issues. In order to improve the dynamic analysis for existing decision-making, a novel approach of selecting the optimal countermeasure using game theory is proposed. Based on the signal game theory, a multi-stage adversary model for dynamic defense is established. Afterwards, the payoffs of candidate attack-defense strategies are quantified from the viewpoint of attack surface transfer. Then the perfect Bayesian equilibrium is calculated. The inference of attacker type is presented through signal reception and recognition. Finally the countermeasure for selecting optimal defense strategy is designed on the tradeoff between defense cost and benefit for dynamic network. A case study of attack-defense confrontation in small-scale LAN shows that the proposed approach is correct and efficient.

A Experimental Study on the Repeatability of Network RTK-GPS with Spider Net Type (Spider Net 방식 Network RTK-GPS측량의 반복재현성에 대한 실험연구)

  • Kim, Sun-Chul;Kang, Sang-Gu;Lee, Jin-Duk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.37-42
    • /
    • 2007
  • A network of MAC type was constructed in the Gyeonggi-do area to analyze the usefulness and validity of the Network RTK-GPS. Six sites were selected to conduct GPS observation for 24 hours, and by determining the ITRF of each site, coordinates were determined in connection with IGS network. Then check points which were established in Gimpo area were observed at least 7 times by Network RTK at 20 secs of retrieval intervals. The result showed high accuracy in the difference between the coordinates determined immediately by the in-field network survey and the current performance was 1-2cm. Its biggest benefit is the expanded range of survey and efficiency of practice. In summary, it is proved that a network survey has the accuracy, scalability and efficiency and it is expected that the network survey will contribute to the cadastral survey.

  • PDF

Estimation of Environmental Costs Based on Size of Oil Tanker Involved in Accident using Neural Network (신경망을 이용한 유조선 기름 유출사고에 따른 환경비용 추정에 관한 연구)

  • Shin, Sung-Chul;Bae, Jeong-Hoon;Kim, Hyun-Soo;Kim, Seong-Hoon;Kim, Soo-Young;Lee, Jong-Kap
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.60-63
    • /
    • 2012
  • The accident risks in the marine environment are increasing because of the tendency to build faster and larger ships. To secure ship safety, risk-based ship design (RBSD) was recently suggested based on a formal safety assessment (FSA). In the process of RBSD, a ship designer decides which risk reduction option is most cost-effective in the design stage using a cost-benefit analysis (CBA). There are three dimensions of risk in this CBA: fatality, environment, and asset. In this paper, we present an approach to estimate the environmental costs based on the size of an oil tanker involved in an accident using a neural network. An appropriate neural network model is suggested for the estimation,and the neural network is trained using IOPCF data. Finally,the learned neural network is compared with the cost regression equation by IMO MEPC 62/WP.13 (2011).

DCNN Optimization Using Multi-Resolution Image Fusion

  • Alshehri, Abdullah A.;Lutz, Adam;Ezekiel, Soundararajan;Pearlstein, Larry;Conlen, John
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4290-4309
    • /
    • 2020
  • In recent years, advancements in machine learning capabilities have allowed it to see widespread adoption for tasks such as object detection, image classification, and anomaly detection. However, despite their promise, a limitation lies in the fact that a network's performance quality is based on the data which it receives. A well-trained network will still have poor performance if the subsequent data supplied to it contains artifacts, out of focus regions, or other visual distortions. Under normal circumstances, images of the same scene captured from differing points of focus, angles, or modalities must be separately analysed by the network, despite possibly containing overlapping information such as in the case of images of the same scene captured from different angles, or irrelevant information such as images captured from infrared sensors which can capture thermal information well but not topographical details. This factor can potentially add significantly to the computational time and resources required to utilize the network without providing any additional benefit. In this study, we plan to explore using image fusion techniques to assemble multiple images of the same scene into a single image that retains the most salient key features of the individual source images while discarding overlapping or irrelevant data that does not provide any benefit to the network. Utilizing this image fusion step before inputting a dataset into the network, the number of images would be significantly reduced with the potential to improve the classification performance accuracy by enhancing images while discarding irrelevant and overlapping regions.

Research of Intelligent Home Robot based on Home Network

  • Choi, Dong-Suk;Park, Jin-Hyun;Kim, Hun-Mo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1575-1579
    • /
    • 2003
  • This paper present the control of an intelligent home robot based on home network. The existing research is almost research of independent robot. home network will be a way that equipments in home exchange information. As robot combine home network, robot will be more intelligent and more powerful. We benefit for that load is divided in home network environment. The robot which has ultrasonic sensors performs obstacle avoidance with the Fuzzy Algorithm. Ethernet serial converter transmit the measuring data of home to a home server and the home server accumulates data. The home server controls the robot and manages home according to the acquired data. This paper supposed the home network system that consist of home server, embedded robot and intelligent home robot.

  • PDF

A Network Capacity Model for Multimodal Freight Transportation Systems

  • Park, Min-Young;Kim, Yong-Jin
    • Journal of Korea Port Economic Association
    • /
    • v.22 no.1
    • /
    • pp.175-198
    • /
    • 2006
  • This paper presents a network capacity model that can be used as an analytical tool for strategic planning and resource allocation for multimodal transportation systems. In the context of freight transportation, the multimodal network capacity problem (MNCP) is formulated as a mathematical model of nonlinear bi-level optimization problem. Given network configuration and freight demand for multiple origin-destination pairs, the MNCP model is designed to determine the maximum flow that the network can accommodate. To solve the MNCP, a heuristic solution algorithm is developed on the basis of a linear approximation method. A hypothetical exercise shows that the MNCP model and solution algorithm can be successfully implemented and applied to not only estimate the capacity of multimodal network, but also to identify the capacity gaps over all individual facilities in the network, including intermodal facilities. Transportation agencies and planners would benefit from the MNCP model in identifying investment priorities and thus developing sustainable transportation systems in a manner that considers all feasible modes as well as low-cost capacity improvements.

  • PDF

Future Smart Communication Networks: A Survey of Security issues in Developing a Smart City

  • AlEisa, Hussah N.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.139-144
    • /
    • 2022
  • The smart cities are evolving constantly and are responsible for the current transformation of cities and countries into a completely connected network of information and technology This interconnected network of a huge number of smart devices is capable of exchanging complex information and provides tremendous support including enhanced quality of life within urban locations. Unfortunately this set-up is vulnerable to security attacks and requires the widespread ubiquitous network to authorize access through privacy and thus offer security in order to ensure civilian participation in a country. The smart network should benefit the individuals of the country by developing potential strategies to protect the smart cities and their participating entities from the unauthorized attacks. Trustworthy data sharing strategies based on the utilization of advanced technology features via smart communication network could solve some issues of privacy and security. This paper presents the challenges and issues related to protection and highlights the important aspects of securing the smart cities and its components. It also presents the role of cloud security for building a secure smart city.

Optimal Soft-combine Zone Configuration in a Multicast CDMA Network (멀티캐스트 CDMA 네트워크에서의 Soft-combine을 지원할 기지국의 선정)

  • Kim Jae-Hoon;Myung Young-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper we deal with a cell planning issue arisen in a CDMA based multicast network. In a CDMA based wireless network, a terminal can significantly reduce the bit error rate via the cohesion of data streams from multiple base stations. In this case, multiple base stations have to be operated according to a common time line. The cells whose base stations are operated as such are called soft-combined cells. Therefore, a terminal can take advantage of error rate reduction, if the terminal is in a soft-combined cell and at least one neighboring cell is also soft-combined. However, as soft-combining operation gives heavy burden to the network controller, the limited number of cells can be soft-combined. Our problem us to find a limited number of soft-combined cells such that the benefit of the soft-combining operation is maximized.