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Abstract 

 
In recent years, advancements in machine learning capabilities have allowed it to see 
widespread adoption for tasks such as object detection, image classification, and anomaly 
detection. However, despite their promise, a limitation lies in the fact that a network’s 
performance quality is based on the data which it receives. A well-trained network will still 
have poor performance if the subsequent data supplied to it contains artifacts, out of focus 
regions, or other visual distortions. Under normal circumstances, images of the same scene 
captured from differing points of focus, angles, or modalities must be separately analysed by 
the network, despite possibly containing overlapping information such as in the case of images 
of the same scene captured from different angles, or irrelevant information such as images 
captured from infrared sensors which can capture thermal information well but not 
topographical details. This factor can potentially add significantly to the computational time 
and resources required to utilize the network without providing any additional benefit. In this 
study, we plan to explore using image fusion techniques to assemble multiple images of the 
same scene into a single image that retains the most salient key features of the individual 
source images while discarding overlapping or irrelevant data that does not provide any benefit 
to the network. Utilizing this image fusion step before inputting a dataset into the network, the 
number of images would be significantly reduced with the potential to improve the 
classification performance accuracy by enhancing images while discarding irrelevant and 
overlapping regions.  
 
 
Keywords: Image Fusion, Deep Convolutional Neural Networks, Wavelets, Image 
Classification, Heterogeneous DCNN Fusion 
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1. Introduction 

In recent years, machine learning has seen widespread adoption in fields such as classification, 
object recognition, and sentiment analysis. Advancements in the computational capabilities of 
GPUs has allowed machine learning techniques to leverage massively parallel processors, 
increasing practical viability to analyze and process data at rates far beyond those attainable 
through the use of a CPU alone. Specifically, Deep Convolutional Neural Networks (DCNNs) 
are able to perform high-level classification tasks involving text, images, and audio at rates 
that have been previously impossible [1,2]. This has allowed for the efficiency of classification 
to be increased such that some tedious, repetitive tasks can be significantly automated, thereby 
replacing or augmenting the error-prone human classification process. However, despite their 
promise, neural networks still suffer from several limitations, many of which relate to their 
need for an enormous quantity of representative training data [3]. Generally, the training 
process consumes an extreme amount of computational and storage resources, the subsequent 
performance of the network depends on the quality of the training data that is given. Especially 
in the case of visible light imagery, where out-of-focus sections, sensor malfunctions, and 
other distortions can significantly impact the raw pixel data given and the consequent integrity 
of the network. Furthermore, a substantial amount of training data is normally required for a 
well-trained image classification model. Images captured from a variety of angles, focuses, or 
different types of sensors are generally required, which can considerably add to the 
computational requirements and time necessary to test the network adequately. Normally, each 
individual image would have to be considered separately by the network, even if of the same 
scene but captured from a different angle or with another type of sensor.  
 
 One possible solution is by utilizing image fusion techniques to consolidate images of the 
same scene but captured from different focus, sensors, or modalities to diminish the resource 
requirements to deploy     the network. By fusing images into a single stream of data to test a 
neural network model, images that have been captured from various angles, or with multi-
modal or multi-spectral sensors can be analyzed simultaneously rather than being considered 
separately [4,5,6,7]. Multisensory applications were first created as a subset of remote sensing 
and have been developed as a subset of data fusion. Sources of fusion from video, audio, and 
numerical data is known as abstraction-wise data fusion. When applying this to cyberspace, 
this concept of data fusion profoundly relates to the study at hand. One early application of 
fusion was in the medical field where respiratory and electrooculography signals were fused 
with electroencephalography signals to develop numerous fatigue models for patients. Other 
types of fusion techniques such as data-drive, pyramid-based, and wavelet based fusion 
methods became viable as further advancements progressed [8]. The primary techniques used 
in this study are multi-focus and multi-modal fusion which allows separate images of the same 
scene which contain distinct key features to be fused into a single image. The applicability for 
image fusion techniques has proliferated into fields such as medical image analysis, 
environmental monitoring, and remote sensing [9] by allowing images of the same scene 
captured from different sensors or modalities to be combined. A key aspect of this study is 
optimizing the identification of features and segmenting regions of interest for images captured 
from different focuses or modalities, which can be substantially more computationally 
complex [10].   
 
 Massive amounts of digital data are produced by news sources, multimedia user content, 
and mobile collections in the form of videos and images. This data is not typically categorized, 
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indexed, or stored in a manner convenient for image fusion. Archives, such as ones run by 
newspapers, museums, and libraries require teams of people to annotate and classify such 
images. Developing an algorithm for automated image fusion would significantly reduce the 
time required for downstream image analysis, classification, and tagging [37]. To simplify the 
process, edge detection can be used to determine objects within the images [38]. Image fusion 
is a continually growing field in image processing within the information fusion field that 
shows promise for many applications [39]. Image fusion uses image processing techniques to 
integrate complementary data and increase the amount of information contained in the image 
[40, 41]. Applications of image fusion include video tracking, decision support, situation 
awareness, target recognition, compensation for obscuration, simultaneous tracking and 
identification, dynamic scene analysis, and sensor design [42, 43, 44, 45, 46, 47, 48]. 
 
 Many techniques are available for image fusion. Bin and Chao [49] proposed a technique 
that uses image fusion to combine discrete multiwavelet transformations. Piella, et al., [50] 
proposed a multiresolution fusion algorithm that allows for the imposition of data dependent 
consistency constraints by combined region and pixel level image fusion. In any fusion 
assessment, difficulty arises from the fact that there is no clear ground-truth on which to base 
the assessment.  
 
 Although numerous image fusion algorithms have been developed, there has been no clear 
distinguishing criteria established to determine which is best [52, 53]. To determine the quality 
of the image fusion, methods involving information theory, image features, structural 
similarity, and human perception have been used. Additionally, most fusion algorithms are 
optimized to fuse multiple images. One of the main difficulties in quantifying the effectiveness 
of an image fusion algorithm is that some techniques are more specialized for one application, 
causing them to be less effective in others. The relationship is still ambiguous between an 
adapted fusion algorithm, the input images, and the quality of the images. As such, more work 
is needed to determine why a certain algorithm works better in a given situation than others. 
Multiple images of the same scene captured from varying focus points create a wide variation 
of contextual angles of the scene can be fused through multi-focus image fusion into a single 
stream of data. Different perspectives, such as background and foreground focus are able to 
be consolidated into a single fused image that retains the most significant features of both the 
fore- and backgrounds. An issue, however, lies in a lack of suitable datasets that not only 
contain a foreground and background focus image that can be classified, that also contain an 
in-focus image to act as a ground truth. One possible solution to this is through the use of 
synthetic data generation, in which renders can be generated in a controllable environment. 
When utilizing real-world datasets, often times it is difficult to capture images under ideal 
circumstances or with a wide range of conditions. Having a controlled, simulated environment 
allows for unique, outlier conditions to be simulated to avoid the need to place physical sensors 
in uncommon environments or capture chance events. In this study, we utilize Panda3D to 
create and render simulated 3D environments. Models that act as objects to be classified are 
placed within the simulated environment in random positions and orientations, which allows 
a wide variety of images to be captured. The objects were placed in both the foreground and 
background to ensure that the objects would be out of focus in both the foreground and 
background of the images. Additionally, because the simulation is 3D, one of the most 
significant advantages is that it allows a depth map to be generated in order to capture the 
depth of the environment and the objects in it, something that would be difficult if using 
datasets that only contain foreground focus and background focus images. Using this depth 
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map, a depth of field simulation is applied to the generated images, which allows for the focal 
point to be changed based on depth. This allows for an arbitrary number of train and test 
images to be created, while containing objects that the network is able to classify.   Moreover, 
combining visible light imagery with other modalities and sensors, such as infrared imaging, 
of the same scene encompasses multi-modal image fusion. This allows features that are 
undetectable or less pronounced by infrared sensors due to their limitations that are otherwise 
excellent at capturing information undetectable by visible light imagery, to be fused with 
environmental details such as topographical features and abiotic elements. Reducing the 
number of images required to properly test a network while retaining the most significant 
information through the creation of fused imagery allows network to be utilized efficiently and 
minimizing the impact of noise and other distortions. This process involves combining images 
that contain different significant features into a single stream of data, which can potentially 
diminish problems that arise from data captured in substandard conditions or with 
malfunctioning sensors. The primary objective of this study is the creation of an efficiently 
optimized network that can actively account for unanticipated environmental circumstances 
that could affect the integrity of individual images. By condensing the total amount of images 
required to test the network while extracting and retaining the most salient features in the 
image while discarding irrelevant noise, a major benefit would be decreasing the 
computational requirements to test the network by reducing the number of images, while also 
removing errors that could be caused by noise or artifacts.  
 
    The remainder of this paper is organized as follows: Section II describes the technical 
background of the techniques used in this study including multi-resolution transformations, 
the machine learning techniques, as well as the fusion methods and types of images being 
fused. Section III summarizes the methodology of heterogeneous DCNN fusion as well as the 
multi-resolution image fusion techniques used in this study. Section IV shows the results of 
our study and visualizes the numerical data of the classification results for the fused imagery. 
Section V discusses the impact of our study including the viability and effectiveness while 
exploring the future direction of our work.  

 

2. Technical Background 
Popular scenarios for image fusion include multi-modal, multi-resolution, and multi-focal. 
Multi-modal analysis fuses images that were captured from different sensors, creating an 
image from the most salient features from each source. Multi-resolution analysis allows for 
the creation of a series of approximations of an image. Multi-focal analysis fuses images of 
the same scene with different focal points, creating an all-in focus image. These techniques 
will allow for the retention of the most significant features and then discovering the separation 
of blur, edge, and noise coefficients and then apply our deconvolution kernel to them, rather 
than the pixel values. It is useful to note that blur is most apparent to the human eye in the 
edges contained within the images. The multi-resolution analysis will mitigate the problem of 
pixel intensity values becoming distorted by the deblurring process. Next, frequency domain 
fusion and wavelets will be discussed.  

2.1 Frequency Domain Fusion 
Fusing visible light imagery, such as multi-focus images, or multi-modal imagery can be 
accomplished through frequency domain fusion [11]. This technique involves decomposing 
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input images into their multi-resolution coefficients using a discrete transformation. These 
decomposed coefficients are segmented and manipulated using the most optimal fusion 
techniques for the images and synthesized into a single image through an inverse 
transformation [12,13]. The decomposed coefficients can additionally have thresholding and 
other denoising techniques applied to enhance the images before fusion and reconstruction.   
 

2.2 Wavelet 
Wavelets are defined as a finite oscillation which has an average value of zero. The amplitude 
of this begins at a value of zero and oscillates a finite number of times and ends with a value 
of zero as well. For a function ( )xψ  to be classified as a wavelet, the two following equations 
must be held:   

 ( ) 0x dxψ
∞

−∞
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with ( )ψ ω  being the Fourier transform of the chosen wavelet function and Cψ  being the 
admissible constant. Mostly derived by Daubechies, there has been several wavelets 
constructed. Wavelets are categorized from discretely over a grid to continuously over time or 
space as well as being real or complex valued. The rescale and translation parameters are the 
two fundamental characteristics of wavelets. Given a base wavelet ( )ψ ω  the family of 
wavelets, , ( )j k xψ  can be defined as: 
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where j  is the scaling variable and k  is the translation variable. These characteristics are 
what allow wavelets to be used to detect abrupt changes in signals, making them suitable 
transforms for point-wise edge detection. Continuous wavelet transforms (CWT) are defined 
as the inner product of a wavelet ( )xψ  and a function 2( ) ( )f x L R∈ , expressed as: 
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with the function f  for the purposes of signal or image processing representing a signal or 
image that has had the wavelet transformation applied to it. Given that images and signals for 
machine learning purposes would be sampled as discrete-space functions rather than processed 
as continuous-space functions, the discrete wavelet transform (DWT) is in general used to 
process them. The DWT, similar to the CWT, of a function f  denoted as GΨ  is expressed 
as: 
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with M  being a scaling weight. The transform decomposes signals into their coefficients 
which capture frequency and spatial information.  There are, however, several disadvantages 
that result from moving a continuous transform to a discrete one. Namely, the wavelet 
transform loses directionality and shift-invariance, making it able to detect edges and abrupt 
changes but is unable to detect contours as a single section in the case of images for instance. 
This lack of shift-invariance is due to the DWT’s inability to transform shifted versions of f  
in the time domain to shifted versions of GΨ in the wavelet domain. For the purposes of this 
study, images that have been captured for the purpose of frequency domain fusion can be 
decomposed using various wavelet and other multi-resolution transforms such as contourlet, 
curvelet, or bandelet. After the images have been decomposed on multiple levels, these 
coefficients are fused through various methods such as maximum, minimum, mean, or 
principal component analysis. The wavelets applied in this study include Coiflet, biorthogonal, 
Meyer, Daubechies, Symlet, and Gaussian derivatives [14,15,16,17,18,19]. 

2.3 Multi-Modal Fusion 
Multi-modal image fusion allows for images captured from different sensors, such as visible 
light and infrared thermal imaging, to be fused into a single image that retains the most salient 
features of the individual images [20]. However, due to these differing modalities, errors can 
potentially appear such as color artifacts or other distortions and as such multi-modal image 
fusion must be precisely implemented. Additionally, erroneous distortions can also appear 
from the fusion of topographical and morphological details as infrared sensors are not as 
capable of capturing these details, which could create artificial shadowing and other distortions 
[21].   

2.4 Multi-Resolution Fusion 
It is possible to create an approximation of a set of images through a technique known as multi-
resolution analysis (MRA), which can then be fused [22]. Images are decomposed into their 
detail coefficients across multiple levels of resolution which allow the most salient features of 
the image to be isolated and extracted while reducing the effects of noise and blur by 
manipulating the edge coefficients of images as opposed to raw pixel data. By decomposing 
images into multiple levels of resolution, the effects of blurring and artifacts can be diminished 
[23]. MRA is defined as a sequence of closed subspaces, ,nV n∈¢  in ψ  in a containment 
hierarchy: 

 2 1 0 1 2.... ....V V V V V− −⊂ ⊂ ⊂ ⊂ ⊂ ⊂   (6) 

 The nested spaces contain an intersection with the zero function and a union that is dense 
in ( )¡L , 

 { } ( )20 ,    = n j j jV V∩ = ∪ L R   (7) 

The hierarchy (8) is constructed such that V-spaces are self-similar, 
 

 0(2 )   if  ( )j
jf x V f x V∈ ∈   (8) 

and there is a scaling function 0Vψ ∈  whose integer-translates span the space 0V , 
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and for which the set { }ψ  is an orthonormal basis. By decomposing multiple images of the 
same scene rather than manipulation of raw pixels, the detail coefficients which contain the 
key features of the image can be manipulated and fused. This allows MRA-based image fusion 
to be utilized for both denoising and deblurring as well as image fusion.  

2.5 Multi-Focus Fusion 
Images of the same scene captured from differing points of focus can result in significant 
variations of the visual quality of different regions of the image. The capability of cameras to 
focus on key features without a loss of quality in other sections remains one of the most 
substantial constraints in image processing. A possible solution to this issue is using multi-
focus image fusion, in which multiple images containing different points of focus are fused 
into a single, in-focus image. An image can have a region in-focus in various aspects of the 
frame, such as the background, foreground, mid-section, etc. while the remaining sections are 
out of focus, essentially containing useless information. By fusing the most prominent features 
of the in-focus regions, the resulting image would become subsequently have a better quality 
than the source images. Tenenbaum gradient (Tenengrad), spatial frequency (SF), sum-
modified-Laplacian (SML) are types of focus-measurements that can be used to measure the 
clarity of regions of an image [24]. Additionally, information fusion applications are supported 
by numerous image fusion techniques [25]. Multi-focus image fusion has viability 
applicability for a wide range of fields, including aerial reconnaissance and surveillance, three-
dimensional reconstruction, photography, and video production [26].  
  

  
As exampled in Fig. 1, multi-perspective fusion is the process of fusing multiple images of the 
same scene or object captured from different focal points.  
 

 

 

Fig. 1.  Foreground focus (left), 
background focus (center), and 

fused (right) 
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2.5 Multi-Focus Fusion 
One of the fusion methods utilized in this study is achieved by selecting the minimum criterion 
using the absolute value of the matrices that represent the source images, defined as: 

 ij ij ij
ij

ij

a if a b
f

b otherwise

 ≤= 


  (10) 

 Due to it being possible for the multi-resolution coefficients in the matrix to be negative, 
the absolute value must be used as the pixel values must be positive. The purpose of this 
function is to compare the two entries of matrices a  and b  and select the lower value of the 
two for the corresponding matrix f .  

2.5 Multi-Focus Fusion 
Paired with the selection of the minimum it is also necessary to select the maximum. Like the 
minimum equation, the two input matrices that represent the source images are compared with 
the higher pixel value being selected to be used in the fused matrix f , defined as:  

 ij ij ij
ij

ij

a if a b
f

b otherwise

 ≥= 


  (11) 

2.5 Multi-Focus Fusion 
Another technique utilized for image fusion is using principal component analysis (PCA), 
which is a multi-variate analysis technique that is typically used for the dimensionality 
reduction of large matrices and feature extraction [27,28,29]. This process involves reducing 
large matrices of correlated variables into their corresponding, uncorrelated principal 
components. These uncorrelated, linearly independent components are ordered according to 
their variance and contain the most significant features of the data. As the variables are linearly 
independent, PCA is an orthogonal linear transformation that transforms a matrix X  with n
rows, that represent the source image, into a set of vectors of weights w  with m  columns that 
correspond to the input image, defined as: 

 ( ) 1 2( , ,... )k mw w w w=   (12) 

The vectors of weights contain the principal component scores  mapped from each row of 
where  is defined as: 

 (1) 1 2( , ,..., )lt t t t=   (13) 

where ( ) ( ) (k)k i it x w= ⋅   for 1,...,i n=  1,...,k m= . The principal components are  

ordered in such a way that the first principal component contains the highest variance and thus 
represents most of the data, with the remaining thk  PCs ordered from highest to lowest 
variance. The first principal component, (1)w  maximizes the variance by satisfying the 
following condition:  
 

t
X t



4298                                                                           Alshehri et al.: DCNN Optimization Using Multi-Resolution Image Fusion 

 2argmax{ } argmax{ }
(1)

11

T Tw Xw w X Xw
ww

= =
==

  (14) 

With the succeeding thk  PCs being found by subtracting the first 1k −  principal components 
from the matrix x  such that:  
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followed by calculating the weight vector that maximizes the variance: 

 2
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Every pair of principal components are orthogonal to each other as each are derived from the 
eigenvectors of the covariance of the data which are always symmetric, making PCA an 
orthogonal linear transform [30].  
 

2.5 Multi-Focus Fusion 
Deep Convolutional Neural Networks (DCNNs) are a prominent type of learning model 
normally composed of a deep, feed-forward architecture that can learn the features of their 
input. Based on the features learned from the training data, a well-trained model can classify 
new input into the predefined labels. Because new input must be classified into the categories 
or labels that the model was trained on, these networks are specific to the data on which they 
are trained [31]. The feed-forward architecture of DCNNs allows the output of previous layers 
to be used as input for subsequent connected layers, in this regard the architecture is a variable 
number of layers stacked on one another [32], shown in Fig. 2. All parameters, such as the 
filters and weights of the network, aside from static variables such as layers or kernel size are 
initialized to random values. The network then receives input data and goes through a 
convolutional layer in which the network convolves over the input data to learn its features. 
An activation map which contains the output of each convolution over the entire input is 
calculated from the filters that convolve over the data [34]. The filters in the convolution layer 
are used to learn its input by activating when specific features correlated to classes are 
activated. The output of this convolutional step is then forward propagated through the rest of 
the network layers, using the output of previous layers as input for the next. The locations of 
features that were detected from the images are then mapped in the pooling layers [35]. The 
activation mappings which include the learned features of the network from the previous layers 
are then fed to the fully connected layers which are responsible for the high-level reasoning 
and classification of the network using the learned weights. A summation of the error is 
calculated across all the classes at the output layer and using gradient descent, the filter values 
and weights are updated through a backpropagation step. This backpropagation step allows 
the model to optimize its parameters to improve its classification accuracy. 
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2.5 FC7 Layer Extraction 
Prior to the softmax output layers of the neural networks utilized in this study, which provide 
the probabilities for each of classes of the input, are the fully connected layers which handle 
the high-level reasoning and correlations. The fully connected layers receive the output of all 
the previous layers, the convolutional and pooling layers that learn and map the features of the 
input, as the activation maps of the high-level features. The fully connected layers themselves 
are comprised of vectors that represent the probabilities of each label by determining how 
classes correlate to each of the features. The neural networks utilized in this study, despite 
having different architectures, share the property of having the FC7 layer as their penultimate 
layer, shown in Fig. 3, which contains the activation weights across all the classes of each of 
the features. The properties of this layer allow it to be extracted before classification and used 
as input for a Support Vector Machine (SVM), as it contains the high-level correlations 
between features and classes. 

2.5 Multi-Focus Fusion 
Although differing networks having varying image classification architectures, a common 
property is the presence of fully connected layers of the same size. These layers receive the 
output of the previous layer into a fusible layer of size 4096. Heterogeneous DCNN Fusion 
takes advantage of the identical FC7 layer sizes of the different architectures used by extracting 
these feature vectors and fusing them into a single feature vector that high-level reasoning and 
correlations of all the individual networks [36]. The extracted feature vectors can be fused 
using a variety of fusion methods, such as the maximum or minimum values, summation, or 
concatenation. This consolidates them into a single feature vector which can then be used as 
input for an SVM classifier, which is then used for classification, shown in Fig. 4.  

Fig. 2.  Neural Network Architecture 

 

Fig. 3.  Topology of a DCNN 
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3. Methodology 
For our study, multi-focus images were used, images containing multiple focal points were 
first generated, with the general image fusion methodology shown in Fig. 5. The images used 
in this study were synthetically generated and blurred between the foregrounds and 
backgrounds, creating two out of focus images from a single ground truth image, shown in 
Fig. 6-8 which include the ground truth images, the out of focus images, and the reconstructed 
fused images. In order to gather a suitable amount of images that have multiple focal points, 
images were synthetic data generation was used to create 3D renders of two types of objects 
in the same environment in order to test binary classification accuracy. Two sets of images 
were generated, the actual 3D render as well as a generated depth map that was used to 
determine the foreground and background areas of the image. The objects were places 
randomly within the scene, both in the foreground and background, as well as rotated in order 
to obtain a variety of images.  After the image sets were generated, the depth map was used to 
simulate different depth of fields using a moving average based on the maximum and 
minimum pixel values of the depth map. From this, two images, a foreground and background 
focus image were generated while still preserving the original images to act as ground truth. 
The images were then decomposed using a multi-resolution transform into their detail 
coefficients and a thresholding step applied for the purpose of denoising and image 
enhancement before fusing them, shown in Algorithm 1.  
 

Algorithm 1 Wavelet Denoising 
 procedure WAVELETDENOISING  
  n = # of Images  
  M = Threshold Technique 
  for i : 1 → n 
   for each image I 
    [C, S] ← wavedec2(Ii, level, waveletName) 
    [approximateCoefficients, detailedCoefficients] ← separation(C) 
    d ← thresholding(detailedCoefficients, Threshold Value, M) 
    C’ ← concatenate(approximateCoefficients, d) 
    denoisedImage ← waverec2(C’, S, level, waveletName) 
  end 

Fig. 4.  Heterogeneous DCNN 
Fusion 

Fig. 5.  Image Fusion 
Methodology 
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 The decomposed details coefficients were then fused to combine the most salient and 
significant features of each of the source images while reducing the amount of irrelevant 
information, caused by out of focus regions, or topographical information that thermal imaging 
is not adept at capturing. The decomposed images contain the directional coefficients which 
capture edges and directionality which make them ideal for detecting and fusing the most 
prominent features of the original images. For example, the in-focus regions of multi-focus 
images were typically found to have stronger detail coefficients compared to the out of focus 
regions, as seen in Fig. 6. Various fusion methods were applied to the denoised coefficients, 
including max, min, and PCA, to fuse them into a single stream of data that retains the most 
significant key features of the source images, shown in Algorithm 2. An inverse transformation 
was then applied to the fused detail coefficients to reconstruct the final fused image, which 
can then be used as input for the three neural networks utilized in this study, AlexNet, VGG16, 
and VGG19. The general methodology for the classification and DCNN fusion is shown in 
Fig. 7, in which the images were used as input for each of the individual neural networks, with 
their respective FC7 layers being extracted before classification.  The layers were then fused 
using the various fusion methods applied for heterogeneous DCNN fusion, fusing each of the 
three individual feature vectors into a single, fused stream of data that encompasses the high- 

 
 
 
 

Algorithm 2 Image Fusion 
procedure IMAGEFUSION 
MM = Multi-Modal Image 
MF = Multi-Focus Image 
M = Threshold Technique 
for i : 1 → n 
 for each MM, MF 
 [C1,2,S1,2] ← wavedec2([MMi,MFi], level, 
waveletName) 
 [approximateCoefficients1,2, 
detailedCoefficients1,2] ← separation(C1,2) 
 d1,2’ ← denoise(detailedCoefficients1,2, 
Threshold Value, M) 
 new d ← fusion(d1’, d2’, Max, Min, PCA) 
 new c ← concatenate(a, new d) 
 fusedImage ← waverec2(new c, S, level, 
waveletName) 
 end 

Fig. 9. Stronger background coefficients (top) 
& foreground coefficients (bottom) 

F      
 

Fig. 6.  Generated Ground Truth 
 

Fig. 7.  Multi-Focus 
Images 

Fig. 8.  Reconstructed Fused 
Images 
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level reasoning and correlations of the source vectors, shown in Algorithm 3. The fused feature 
vector was then input into a SVM classifier which did the classification.  
 

 
  

 

 
 
 

Algorithm 3 DCNN Fusion 
 procedure DCNNFUSION(reconstructedImageSet) 
  n = # of layers 
  FCn-1 = penultimate layer 
  featureVectors ← FCn-1 Extraction(reconstructedImageSet, AN,VGG16,VGG19) 
  fusedFCn-1 ← FEATUREFUSION(featureVectors) 
 classification ← SupportVectorMachine(fusedFCn-1,testImageSet) 

Algorithm 4 
procedure SYNTHETIC DATA AUGMENTATION(dataset) 

groundTruth ← (originalData) 

fusionSet ←TrainFusion(originalImages, initParams) 

blurredSet ←TrainBlur(originalImages, hiddenSize, 
regularzation) 

combinedSet ← fusionSet + blurredSet 

dataSets ← (original, blurredSet, fusionSet, combinedSet) 

net1 = AlexNet;  net2 = VGG16;  net3 = 
VGG19; 

[trainSet, testSet] ← Split(datasets{i}, groundTruth) 

for i = 1:len(datasets) do: 

     procedure TrainFeatExtraction(trainSet, net1, net2, net3) 

     trainFCn-1(A) ← ExtractFeatures(net1, trainSet) 

     trainFCn-1(VGG16) ← ExtractFeatures(net2, trainSet) 

     trainFCn-1(VGG19) ← ExtractFeatures(net3, trainSet) 

     procedure TestFeatExtraction(testSet, net1, net2, net3) 

 testFCn-1(A) ← ExtractFeatures(net1, trainSet) 

 testFCn-1(VGG16) ← ExtractFeatures(net2, trainSet) 

 testFCn-1(VGG19) ← ExtractFeatures(net3, trainSet) 

 fusedTrainFeatures ← Max, Min, Sum, Mean(trainFCn-1) 

 fusedTestFeatures ← Max, Min, Sum, Mean(testFCn-1) 

 reducedTrainFeatures ← PCA, T-
SNE(fusedTrainFeatures) 

 reducedTestFeatures ← PCA, T-SNE(fusedTestFeatures) 

 procedure ClassifyImages(reducedTrainFeatures, 
reducedTestFeatures) 

  classifier ← reducedTrainFeatures, labels 

  predY ← Predict(classifier, testFCn-1(A)) 

  acc = Mean(predY, testSet.lables) 

  predY ← Predict(classifier, testFCn-1(VGG16)) 

  acc = Mean(predY, testSet.lables) 

  predY ← Predict(classifier, testFCn-1(VGG19)) 

  acc = Mean(predY, testSet.lables) 

  predY ← Predict(classifier, reducedTestFeatures) 

  end 

Fig. 11.  Heterogeneous DCNN Fusion 
 

Fig. 10.  DCNN Fusion & Classification 
Methodology 
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4. Results 
Both multi-focus images that contained background and foreground focus images were 
utilized in our tests. Our trials attempted to compare the performance accuracy as well as the 
computational time of using non-fused images versus fused images of the same scene. Both 
the classification accuracy of the individual networks as well as the SVM trained using the 
heterogeneously fused feature vectors were found. The fusion methods that were used to fuse 
the feature vectors included maximum, minimum, average, and summation which all yielded 
uniformly sized feature vectors that could be input into an SVM classifier. Both accuracy and 
computational time were used as performance metrics to compare the two techniques. The 
results of the trials found that the fused image set had either the same or slightly higher 
classification accuracy for both the individual networks and the fused feature vector, as well 
as lower computational time, with the results shown in Fig. 9-14 which show the accuracy of 
the trials using both fused and non-fused images. Our trials found that utilizing image fusion 
to fuse images into a single stream of data not only generally had either the same or better 
performance than the non-fused images, but also consistently had lower computational times 
to fully process the dataset, shown in Fig. 16 & 17, which compares the trial times of the fused 
image sets and unfused image sets. 

 

 
 

Fig. 14.  Fused Accuracy Results 
 (Individual Networks) 

Fig. 15.  Fused Accuracy Results  
(DCNN Fusion) 

0.8

0.9

1

1 2 3 4 5

Non-Fused

Sum Max Min Avg

0.9

0.95

1

1 2 3 4 5

Fused

AlexNet VGG16 VGG19

0.8

0.9

1

1 2 3 4 5

Non-Fused

AlexNet VGG16 VGG19

0.99

0.995

1

1 2 3 4 5

Fused

Sum Max Min Avg

Fig. 12.  Non-Fused Accuracy Results 
(Individual Networks) 

Fig. 13.  Non-Fused Accuracy Results 
(DCNN Fusion) 



4304                                                                           Alshehri et al.: DCNN Optimization Using Multi-Resolution Image Fusion 

 
Our results found that compared to traditional methods, utilizing image as well as 
heterogeneous DCNN fusion yielded the same if not better accuracy, shown in Tables 1 & 2 
while reducing the total time required, shown in Table 3. 

 
 

 In order to judge the performance of our fusion methods, Receiver Operating Character 
(ROC) curves were calculated for each of the network configurations for both the fused and 
non-fused datasets. Normally, ROC curves plotted are representative of the false positive rate 
against the true positive rate and as such they are often used for binary classifications 
performance measurements. The results of both ROC curves are shown in Fig. 18 & 19. For 
the non-fused dataset, every network configuration aside from VGG16 and 19 had roughly 
similar performances, and had AUC values above 0.9, however the fused dataset returned 
AUCs of 1.  

 

 

 

AlexNet VGG16 VGG19 Sum Max Min Avg 
0.93762 0.90868 0.8827 0.9565 0.9156 0.9670 0.95958 

0.98054 0.87226 0.8672 0.9356 0.9291 0.9735 0.94112 

0.97405 0.88922 0.8752 0.9311 0.9096 0.9820 0.93413 

0.97904 0.88772 0.8667 0.9341 0.9276 0.9730 0.94661 

0.97255 0.88473 0.8687 0.9281 0.9191 0.9665 0.93413 

0.97555 0.90519 0.8877 0.9466 0.9046 0.9810 0.93613 

0.98004 0.91766 0.8852 0.9431 0.9496 0.9720 0.93114 

0.97904 0.87375 0.8732 0.9316 0.9306 0.9540 0.91916 

0.98204 0.88074 0.8742 0.9331 0.9111 0.9675 0.92914 

0.97006 0.90419 0.8882 0.9535 0.9091 0.9725 0.94162 

0.93762 0.90868 0.8827 0.9565 0.9156 0.9670 0.95958 
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Time (seconds)
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Fig. 16.  Trial Time Results Fig. 17.  Non-Fused Accuracy Results 
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Table 1.  Non-Fused Accuracy Results (DCNN) 
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Whenever a ROC curve results in an AUC of 1, immediate analysis must be done to determine 
the accuracy of the metric, as that would mean that the network classified every image 
correctly, which would be highly unlikely. Upon inspection of the classification results of the 
networks, it was determined that the ROC curve for the fused dataset was not accurate. 
However, the ROC and AUC for the non-fused dataset appeared to provide an accurate 
measure of the networks’ performance. 

5. Conclusion 
The intent of this study was to investigate how image fusion can be used to improve the 
classification accuracy when using datasets that are comprised of images captured from 
different points of focus, modalities, or angles, in such a way that the dataset contains a 
substantial amount of overlapping or irrelevant information. The results of our study found 
that consolidating multiple corresponding images into one stream of data had the benefit of 
having equal if not better classification accuracy, while also requiring less time than the non-

AlexNet VGG16 VGG19 Sum Max Min Avg 
1 0.99002 0.9650 0.999 0.9950 1 1 

0.999 0.99202 0.9780 0.999 0.999 1 0.999 
1 0.99102 0.9640 0.999 0.999 1 0.999 

1 0.99102 0.9770 0.999 0.9950 0.9970 0.998 
1 0.99002 0.9760 0.999 0.9940 1 0.999 

1 0.99301 0.9790 1 0.999 1 0.998 
0.998 0.99102 0.9660 0.9970 0.998 0.9960 0.999 
0.999 0.99202 0.9590 0.998 0.9930 1 0.999 

0.999 0.99401 0.9690 0.999 0.999 1 0.999 
0.999 0.98703 0.9550 0.9970 0.9970 1 0.999 

 AlexNet VGG16 VGG19 DCNN Fusion CPU Time (Secs.) 

Fused 0.87 0.96 0.95 0.952   79.4 
Non-Fused 0.77 0.94 0.94 0.948 52.5 

Table 2.  Fused Accuracy Results (DCNN) 

Fig. 18.  ROC Curves for Fused Dataset Fig. 19.  ROC Curves for Non-Fused Dataset 

Table 3.  Average Accuracy & Performance Times 
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fused dataset. Furthermore, utilizing our image fusion techniques in tandem with DCNN 
fusion along with an SVM classifier further increased the classification accuracy on average 
compared to the individual networks alone. In the future, we plan on expanding our image 
fusion technique to include a wider range of sensor types, modalities, etc. Additionally, future 
work involves further optimization of our techniques used to fuse images to include other 
multi-resolution transformations.  
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