• Title/Summary/Keyword: Network분석

Search Result 14,476, Processing Time 0.047 seconds

Development of Image Classification Model for Urban Park User Activity Using Deep Learning of Social Media Photo Posts (소셜미디어 사진 게시물의 딥러닝을 활용한 도시공원 이용자 활동 이미지 분류모델 개발)

  • Lee, Ju-Kyung;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.42-57
    • /
    • 2022
  • This study aims to create a basic model for classifying the activity photos that urban park users shared on social media using Deep Learning through Artificial Intelligence. Regarding the social media data, photos related to urban parks were collected through a Naver search, were collected, and used for the classification model. Based on the indicators of Naturalness, Potential Attraction, and Activity, which can be used to evaluate the characteristics of urban parks, 21 classification categories were created. Urban park photos shared on Naver were collected by category, and annotated datasets were created. A custom CNN model and a transfer learning model utilizing a CNN pre-trained on the collected photo datasets were designed and subsequently analyzed. As a result of the study, the Xception transfer learning model, which demonstrated the best performance, was selected as the urban park user activity image classification model and evaluated through several evaluation indicators. This study is meaningful in that it has built AI as an index that can evaluate the characteristics of urban parks by using user-shared photos on social media. The classification model using Deep Learning mitigates the limitations of manual classification, and it can efficiently classify large amounts of urban park photos. So, it can be said to be a useful method that can be used for the monitoring and management of city parks in the future.

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.

Effect of Ecosystem Factors on Job Satisfaction of Long-Term Care Worker -Focusing on the Home Care Worker- (생태체계 요인이 요양보호사의 직무만족에 미치는 영향 -재가급여기관 종사자를 중심으로-)

  • Jae-phil Shim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.383-393
    • /
    • 2023
  • We attempted to provide a way to improve job satisfaction by analyzing the relationship between the factors influencing job satisfaction directly or indirectly by the ecological system factors of long-term care worker who provide elderly care services at home benefit institutions. In this study, job satisfaction was confirmed to have a positive (+) correlation with all ecological factors except for social and cultural environmental factors by setting the causal relationship between the social and social characteristics of long-term care worker and job satisfaction as dependent variables. The factors with the highest correlation with job satisfaction were social support, followed by family support, job conditions, trust in welfare policies for the elderly, self-efficacy, and self-esteem. Therefore, it can be seen that nursing care workers who recognize positive support from the surrounding social network and family surrounding nursing care workers and positively recognize job conditions are generally positive.

Development of a High-Performance Concrete Compressive-Strength Prediction Model Using an Ensemble Machine-Learning Method Based on Bagging and Stacking (배깅 및 스태킹 기반 앙상블 기계학습법을 이용한 고성능 콘크리트 압축강도 예측모델 개발)

  • Yun-Ji Kwak;Chaeyeon Go;Shinyoung Kwag;Seunghyun Eem
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.9-18
    • /
    • 2023
  • Predicting the compressive strength of high-performance concrete (HPC) is challenging because of the use of additional cementitious materials; thus, the development of improved predictive models is essential. The purpose of this study was to develop an HPC compressive-strength prediction model using an ensemble machine-learning method of combined bagging and stacking techniques. The result is a new ensemble technique that integrates the existing ensemble methods of bagging and stacking to solve the problems of a single machine-learning model and improve the prediction performance of the model. The nonlinear regression, support vector machine, artificial neural network, and Gaussian process regression approaches were used as single machine-learning methods and bagging and stacking techniques as ensemble machine-learning methods. As a result, the model of the proposed method showed improved accuracy results compared with single machine-learning models, an individual bagging technique model, and a stacking technique model. This was confirmed through a comparison of four representative performance indicators, verifying the effectiveness of the method.

Threat Situation Determination System Through AWS-Based Behavior and Object Recognition (AWS 기반 행위와 객체 인식을 통한 위협 상황 판단 시스템)

  • Ye-Young Kim;Su-Hyun Jeong;So-Hyun Park;Young-Ho Park
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.189-198
    • /
    • 2023
  • As crimes frequently occur on the street, the spread of CCTV is increasing. However, due to the shortcomings of passively operated CCTV, the need for intelligent CCTV is attracting attention. Due to the heavy system of such intelligent CCTV, high-performance devices are required, which has a problem in that it is expensive to replace the general CCTV. To solve this problem, an intelligent CCTV system that recognizes low-quality images and operates even on devices with low performance is required. Therefore, this paper proposes a Saying CCTV system that can detect threats in real time by using the AWS cloud platform to lighten the system and convert images into text. Based on the data extracted using YOLO v4 and OpenPose, it is implemented to determine the risk object, threat behavior, and threat situation, and calculate the risk using machine learning. Through this, the system can be operated anytime and anywhere as long as the network is connected, and the system can be used even with devices with minimal performance for video shooting and image upload. Furthermore, it is possible to quickly prevent crime by automating meaningful statistics on crime by analyzing the video and using the data stored as text.

Analysis of Contribution of Climate and Cultivation Management Variables Affecting Orchardgrass Production (오차드그라스의 생산량에 영향을 미치는 기후 및 재배관리의 기여도 분석)

  • Moonju Kim;Ji Yung Kim;Mu-Hwan Jo;Kyungil Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This study aimed to confirm the importance ratio of climate and management variables on production of orchardgrass in Korea (1982-2014). For the climate, the mean temperature in January (MTJ, ℃), lowest temperature in January (LTJ, ℃), growing days 0 to 5 (GD 1, day), growing days 5 to 25 (GD 2, day), Summer depression days (SSD, day), rainfall days (RD, day), accumulated rainfall (AR, mm), and sunshine duration (SD, hr) were considered. For the management, the establishment period (EP, 0-6 years) and number of cutting (NC, 2nd-5th) were measured. The importance ratio on production of orchardgrass was estimated using the neural network model with the perceptron method. It was performed by SPSS 26.0 (IBM Corp., Chicago). As a result, EP was the most important variable (100%), followed by RD (82.0%), AR (79.1%), NC (69.2%), LTJ (66.2%), GD 2 (63.3%), GD 1 (61.6%), SD (58.1%), SSD (50.8%) and MTJ (41.8%). It implies that EP, RD, AR, and NC were more important than others. Since the annual rainfall in Korea is exceed the required amount for the growth and development of orchardgrass, the damage caused by heavy rainfall exceeding the appropriate level could be reduced through drainage management. It means that, when cultivating orchardgrass, factors that can be controlled were relatively important. Although it is difficult to interpret the specific effect of climates on production due to neural networking modeling, in the future, this study is expected to be useful in production prediction and damage estimation by climate change by selecting major factors.

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

A Study on the Architecture for Avionics System of Jet Fighters (제트 전투기의 항공전자 시스템 아키텍처에 관한 연구)

  • Gook, Kwon Byeong;Won, Son Il
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.86-96
    • /
    • 2022
  • The development trend of jet fighter's avionics system architecture is the digitization of subsystem component functions, increased RF sensor sharing, fiber optic channel networks, and modularized integrated structures. The avionics system architecture of the fifth generation jet fighters (F-22, F-35) has evolved into an integrated modular avionics system based on computing function integration and RF integrated sensor systems. The integrated modular avionics system of jet fighters should provide improved combat power, fault tolerance, and ease of jet fighter control. To this aim, this paper presents the direction and requirements of the next-generation jet fighter's avionics system architecture through analysis of the fifth generation jet fighter's avionics system architecture. The core challenge of the integrated modularized avionic system architecture requirements for next-generation fighters is to build a platform that integrates major components and sensors into aircraft. In other words, the architecture of the next-generation fighters is standardization of systems, sensor integration of each subsystem through open interfaces, integration of functional elements, network integration, and integration of pilots and fighters to improve their ability to respond and control.

A study on the detection of fake news - The Comparison of detection performance according to the use of social engagement networks (그래프 임베딩을 활용한 코로나19 가짜뉴스 탐지 연구 - 사회적 참여 네트워크의 이용 여부에 따른 탐지 성능 비교)

  • Jeong, Iitae;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.197-216
    • /
    • 2022
  • With the development of Internet and mobile technology and the spread of social media, a large amount of information is being generated and distributed online. Some of them are useful information for the public, but others are misleading information. The misleading information, so-called 'fake news', has been causing great harm to our society in recent years. Since the global spread of COVID-19 in 2020, much of fake news has been distributed online. Unlike other fake news, fake news related to COVID-19 can threaten people's health and even their lives. Therefore, intelligent technology that automatically detects and prevents fake news related to COVID-19 is a meaningful research topic to improve social health. Fake news related to COVID-19 has spread rapidly through social media, however, there have been few studies in Korea that proposed intelligent fake news detection using the information about how the fake news spreads through social media. Under this background, we propose a novel model that uses Graph2vec, one of the graph embedding methods, to effectively detect fake news related to COVID-19. The mainstream approaches of fake news detection have focused on news content, i.e., characteristics of the text, but the proposed model in this study can exploit information transmission relationships in social engagement networks when detecting fake news related to COVID-19. Experiments using a real-world data set have shown that our proposed model outperforms traditional models from the perspectives of prediction accuracy.

Super High-Resolution Image Style Transfer (초-고해상도 영상 스타일 전이)

  • Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.104-123
    • /
    • 2022
  • Style transfer based on neural network provides very high quality results by reflecting the high level structural characteristics of images, and thereby has recently attracted great attention. This paper deals with the problem of resolution limitation due to GPU memory in performing such neural style transfer. We can expect that the gradient operation for style transfer based on partial image, with the aid of the fixed size of receptive field, can produce the same result as the gradient operation using the entire image. Based on this idea, each component of the style transfer loss function is analyzed in this paper to obtain the necessary conditions for partitioning and padding, and to identify, among the information required for gradient calculation, the one that depends on the entire input. By structuring such information for using it as auxiliary constant input for partition-based gradient calculation, this paper develops a recursive algorithm for super high-resolution image style transfer. Since the proposed method performs style transfer by partitioning input image into the size that a GPU can handle, it can perform style transfer without the limit of the input image resolution accompanied by the GPU memory size. With the aid of such super high-resolution support, the proposed method can provide a unique style characteristics of detailed area which can only be appreciated in super high-resolution style transfer.