• Title/Summary/Keyword: NetFPGA

Search Result 40, Processing Time 0.024 seconds

DESIGN OF A FPGA BASED ABWR FEEDWATER CONTROLLER

  • Huang, Hsuanhan;Chou, Hwaipwu;Lin, Chaung
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • A feedwater controller targeted for an ABWR has been implemented using a modern field programmable gate array (FPGA), and verified using the full scope simulator at Taipower's Lungmen nuclear power station. The adopted control algorithm is a rule-based fuzzy logic. Point to point validation of the FPGA circuit board has been executed using a digital pattern generator. The simulation model of the simulator was employed for verification and validation of the controller design under various plant initial conditions. The transient response and the steady state tracking ability were evaluated and showed satisfactory results. The present work has demonstrated that the FPGA based approach incorporated with a rule-based fuzzy logic control algorithm is a flexible yet feasible approach for feedwater controller design in nuclear power plant applications.

An Integrated Software Testing Framework for FPGA-Based Controllers in Nuclear Power Plants

  • Kim, Jaeyeob;Kim, Eui-Sub;Yoo, Junbeom;Lee, Young Jun;Choi, Jong-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.470-481
    • /
    • 2016
  • Field-programmable gate arrays (FPGAs) have received much attention from the nuclear industry as an alternative platform to programmable logic controllers for digital instrumentation and control. The software aspect of FPGA development consists of several steps of synthesis and refinement, and also requires verification activities, such as simulations that are performed individually at each step. This study proposed an integrated software-testing framework for simulating all artifacts of the FPGA software development simultaneously and evaluating whether all artifacts work correctly using common oracle programs. This method also generates a massive number of meaningful simulation scenarios that reflect reactor shutdown logics. The experiment, which was performed on two FPGA software implementations, showed that it can dramatically save both time and costs.

A Study on the Exclusive-OR-based Technology Mapping Method in FPGA

  • Ko, Seok-Bum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.936-944
    • /
    • 2003
  • In this paper, we propose an AND/XOR-based technology mapping method for field programmable gate arrays (FPGAs). Due to the fixed size of the programmable blocks in an FPGA, decomposing a circuit into sub-circuits with appropriate number of inputs can achieve excellent implementation efficiency. Specifically, the proposed technology mapping method is based on Davio expansion theorem to decompose a given Boolean circuit. The AND/XOR nature of the proposed method allows it to operate on XOR intensive circuits, such as error detecting/correcting, data encryption/decryption, and arithmetic circuits, efficiently. We conduct experiments using MCNC benchmark circuits. When using the proposed approach, the number of CLBs (configurable logic blocks) is reduced by 67.6% (compared to speed-optimized results) and 57.7% (compared to area-optimized results), total equivalent gate counts are reduced by 65.5 %, maximum combinational path delay is reduced by 56.7 %, and maximum net delay is reduced by 80.5 % compared to conventional methods.

A RESEARCH ON SEAMLESS PLATFORM CHANGE OF REACTOR PROTECTION SYSTEM FROM PLC TO FPGA

  • Yoo, Junbeom;Lee, Jong-Hoon;Lee, Jang-Soo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.477-488
    • /
    • 2013
  • The PLC (Programmable Logic Controller) has been widely used to implement real-time controllers in nuclear RPSs (Reactor Protection Systems). Increasing complexity and maintenance cost, however, are now demanding more powerful and cost-effective implementation such as FPGA (Field-Programmable Gate Array). Abandoning all experience and knowledge accumulated over the decades and starting an all-new development approach is too risky for such safety-critical systems. This paper proposes an RPS software development process with a platform change from PLC to FPGA, while retaining all outputs from the established development. This paper transforms FBD designs of the PLC-based software development into a behaviorally-equivalent Verilog program, which is a starting point of a typical FPGA-based hardware development. We expect that the proposed software development process can bridge the gap between two software developing approaches with different platforms, such as PLC and FPGA. This paper also demonstrates its effectiveness using an example of a prototype version of a real-world RPS in Korea.

A Study of Future Internet Testbed Construction using NetFGA/OpenFlow Switch on KOREN/KREONET (KOREN/KREONET기반 NetFPGA/OpenFlow 스위치를 이용한 미래인터넷 테스트 베드 구축 방안 연구)

  • Park, Man-Kyu;Jung, Whoi-Jin;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.109-117
    • /
    • 2010
  • Building a large-scale testbed for Future Internet is very important to evaluate a new protocol and new network architecture designed by clean-slate approach. In Korea, new Future Internet testbed project, called FIRST (Future Internet Research for Sustainable Testbed), has been started since Mar. 2009 to design and test new protocols. This project is working together with ETRI and 5 universities. The FIRST@PC is to implement a virtualized hardware-accelerated PC-node by extending the functions of NetFPGA card and build a Future Internet testbed on the KOREN and KREONET for evaluating newly designed protocols and interesting applications. In this paper, we first briefly introduce FIRST@PC project and explain a 'MAC in IP Capsulator' user-space program using raw-socket in Linux to interconnect OpenFlow enabled switch sites on the KOREN and KREONET. After that, we address test results for TCP throughput performance for varying packet size. The test results show that the software based capsulator can support a reasonable bandwidth performance for most of applications.

Separating VNF and Network Control for Hardware-Acceleration of SDN/NFV Architecture

  • Duan, Tong;Lan, Julong;Hu, Yuxiang;Sun, Penghao
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.525-534
    • /
    • 2017
  • A hardware-acceleration architecture that separates virtual network functions (VNFs) and network control (called HSN) is proposed to solve the mismatch between the simple flow steering requirements and strong packet processing abilities of software-defined networking (SDN) forwarding elements (FEs) in SDN/network function virtualization (NFV) architecture, while improving the efficiency of NFV infrastructure and the performance of network-intensive functions. HSN makes full use of FEs and accelerates VNFs through two mechanisms: (1) separation of traffic steering and packet processing in the FEs; (2) separation of SDN and NFV control in the FEs. Our HSN prototype, built on NetFPGA-10G, demonstrates that the processing performance can be greatly improved with only a small modification of the traditional SDN/NFV architecture.

FPGA Implementation of Underlying Field Arithmetic Processor for Elliptic Curve Cryptosystems (타원곡선 암호시스템을 위한 기저체 연산기의 FPGA 구현)

  • 조성제;권용진
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.148-151
    • /
    • 2000
  • In recent years, security is essential factor of our safe network community. Therefore, data encryption/ decryption technology is improving more and more. Elliptic Curve Cryptosystem proposed by N. Koblitz and V. Miller independently in 1985, require fewer bits lot the same security, there is a net reduction in cost, size, and time. In this paper, we design high speed underlying field arithmetic processor for elliptic curve cryptosystem. The targeting device is VIRTEX V1000FG680 and verified by Xilinx simulator.

  • PDF

Design of an Optimized GPGPU for Data Reuse in DeepLearning Convolution (딥러닝 합성곱에서 데이터 재사용에 최적화된 GPGPU 설계)

  • Nam, Ki-Hun;Lee, Kwang-Yeob;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.664-671
    • /
    • 2021
  • This paper proposes a GPGPU structure that can reduce the number of operations and memory access by effectively applying a data reuse method to a convolutional neural network(CNN). Convolution is a two-dimensional operation using kernel and input data, and the operation is performed by sliding the kernel. In this case, a reuse method using an internal register is proposed instead of loading kernel from a cache memory until the convolution operation is completed. The serial operation method was applied to the convolution to increase the effect of data reuse by using the principle of GPGPU in which instructions are executed by the SIMT method. In this paper, for register-based data reuse, the kernel was fixed at 4×4 and GPGPU was designed considering the warp size and register bank to effectively support it. To verify the performance of the designed GPGPU on the CNN, we implemented it as an FPGA and then ran LeNet and measured the performance on AlexNet by comparison using TensorFlow. As a result of the measurement, 1-iteration learning speed based on AlexNet is 0.468sec and the inference speed is 0.135sec.

Development of field programmable gate array-based encryption module to mitigate man-in-the-middle attack for nuclear power plant data communication network

  • Elakrat, Mohamed Abdallah;Jung, Jae Cheon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.780-787
    • /
    • 2018
  • This article presents a security module based on a field programmable gate array (FPGA) to mitigate man-in-the-middle cyber attacks. Nowadays, the FPGA is considered to be the state of the art in nuclear power plants I&C systems due to its flexibility, reconfigurability, and maintainability of the FPGA technology; it also provides acceptable solutions for embedded computing applications that require cybersecurity. The proposed FPGA-based security module is developed to mitigate information-gathering attacks, which can be made by gaining physical access to the network, e.g., a man-in-the-middle attack, using a cryptographic process to ensure data confidentiality and integrity and prevent injecting malware or malicious data into the critical digital assets of a nuclear power plant data communication system. A model-based system engineering approach is applied. System requirements analysis and enhanced function flow block diagrams are created and simulated using CORE9 to compare the performance of the current and developed systems. Hardware description language code for encryption and serial communication is developed using Vivado Design Suite 2017.2 as a programming tool to run the system synthesis and implementation for performance simulation and design verification. Simple windows are developed using Java for physical testing and communication between a personal computer and the FPGA.