• Title/Summary/Keyword: Nerve stimulation

Search Result 636, Processing Time 0.026 seconds

Reduction of muscle cyclooxygenase-2 with transcutaneous electrical nerve stimulation and cold therapy in rats of carrageenan-induced inflammatory muscle pain (Carrageenan으로 유도된 염증성 근통증 흰쥐 모델에서 경피신경전기자극과 냉치료에 의한 비복근의 cyclooxygenase-2의 감소)

  • Paek, Yun-Woong;Chae, Yun-Won
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.1
    • /
    • pp.89-94
    • /
    • 2002
  • Prostaglandins are generated through two isoforms of the enzyme cyclooxygenase, constitutively expressed cyclooxygenase(COX)-1 and COX-2, which is induced at sites of inflammation. Inhibition of COX-2 is desirable as this may avoid side effects seen with NSAIDs. We examined the effects of transcutaneous electrical nerve stimulation and cold therapy on the levels of muscle cycloooxygenase-2 mRNA in rats of carrageenan-induced inflammatory. The method of behavioral assessment were paw withdrawal latency(PWL) and tail flick test(TFT). The COX-2 mRNA levels were quantified by reverse transcription-polymerase chain reaction (RT-PCR). Following the transcutaneous electrical nerve stimulation and cold therapy, PWL and TFT were increased and COX-2 mRNA expression in gastrocnemius muscles were decreased. These results suggest that a transcutaneous electrical nerve stimulation and cold therapy were good therapy for a muscle pain.

  • PDF

The Medial Antebrachial Cutaneous Nerve : Orthodromic and Antidromic Conduction Studies (아래팔 내측분지신경의 자극하는 방법에 따른 신경전도검사의 비교)

  • Kwak, Jae Hyuk;Lee, Dong Kuck
    • Annals of Clinical Neurophysiology
    • /
    • v.7 no.2
    • /
    • pp.83-87
    • /
    • 2005
  • Background: The study of the medial antebrachial cutaneous nerve (MABCN) is an underused electrodiagnostic tool. But its use is often crucial for assessing mild lower brachial plexus or MABCN lesions, and sometimes for differentiating an ulnar mononeuropathy from a lower brachial plexopathy. This study was designed to know the difference of amplitude and velocity in a stimulation method (orthodromic vs antidromic), side of an arm and sex according by age. Method: MABCN conduction studies were performed orthodromically and antidromically in 90 subjects (42 women and 48 men, ranging from 22 to 79 years of age). We divided subjects into three groups by age (group 1: 20-39 years, group 2: 40-59 years, group 3: 60-79 years). The mean sensory nerve action potential amplitudes and sensory nerve conduction velocities in each group was compared by stimulation method, side of an arm and sex. Result: The amplitudes and velocities made a significant difference between orthodromic and antidromic method in all age groups. At comparison in amplitude and velocity by side of an arm, only amplitude was significantly higher in right arm than left by any stimulation method. The amplitudes and velocities were of no statistically differences in sex except amplitude checked orthodromically in right arm. Conclusion: This study suggests that there is the differences in conduction study of MABCN by stimulation method and side of an arm.

  • PDF

ROLE OF SYMPATHETIC NERVE ON THE CONTROL OF MICROCIRCULATION IN THE FELINE DENTAL PULP (고양이 치수에서 교감신경에 의한 미세순환조절에 관한 기능적 연구)

  • Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.375-384
    • /
    • 1996
  • The purpose of this study was to investigate the functional involvement of sympathetic nerve in the control of the microcirculation in the dental pulp with the aim of elucidation of the involvement of neuropeptides and sympathetic nerve in neurogenic inflammation. Experiments were done on the 7 cats anesthetised with sodium pentobarbital, and sympathetic nerve to the' dental pulp was stimulated electrically (10 Hz, 4 V, 1.5 ms, 3.5 mins). Ana-adrenoceptor antagonist phentolamine and a neuropeptide Y antagonist D-myo-inositol-1,2,6-trisphosphate (PP56) were injected close intra-arterially into the dental pulp without changing the systemic blood pressure. The probe of laser Doppler flowmeter was placed on the buccal surface of ipsilateral canine teeth to the stimulation, and pulpal blood flow was measured. Stimulation of the sympathetic nerve decreased pulpal blood flow by $55.24{\pm}7.74\;%$ (mean${\pm}$SEM, n = 13). Stimulation of the sympathetic nerve following the injection of the ${\alpha}$-adrenoceptor antagonist phentolamine ($0.1{\mu}g$/kg) caused decrease of pulpal blood flow by $14.35{\pm}3.43%$ (mean${\pm}$SEM, n=5). Phentolamine attenuated the sympathetic nerve-induced pulpal blood flow decrease by $74.02{\pm}9.32%$ (mean${\pm}$SEM) Stimulation of the sympathetic nerve following the injection of the neuropeptide Y antagonist PP56 (2.3 mg/kg) caused decrease of pulpal blood flow by $30.64{\pm}7.92%$ (mean${\pm}$SEM, n=6). PP56 attenuated the sympathetic nerve-induced pulpal blood flow decrease by $44.37{\pm}11.01%$ (mean${\pm}$SEM). These data provide evidences of the co-contribution of nerepinephrine and neuropeptide Y on the sympathetic nerve-induced vasoconstriction in the feline dental pulp. In addition, they show functional evidences that sympathetic nerve plays an active role in controlling the microcirculation of the dental pulp.

  • PDF

The Effects of the Stimulation Intensity and Inter-Electrode Distance on the Parameters of the Measured Sensory Nerve Signal (전기자극의 강도와 측정전극의 간격이 감각신경신호의 파라미터에 미치는 영향 연구)

  • Lim, Kyeong Min;Song, Tongjin
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.234-241
    • /
    • 2014
  • This study was designed to investigate the effects of stimulation intensity and inter-electrode distance on the parameters of the measured sensory nerve signal. 30 healthy subjects participated in this study. Sensory nerve signals were elicited by four different pulse amplitudes, i.e., 3, 6, 9, 12 mA, with the pulse width fixed at $500{\mu}s$. The sensory nerve signals elicited by the four different pulse amplitudes were measured by four different inter-electrode distances (20, 30, 40, and 50 mm). We extracted four parameters (pulse amplitude, pulse width, pulse area, and latency time from stimulation) from the sensory nerve signals. The measured pulse amplitude and pulse width were increased when the measuring inter-electrode distance was increased while the stimulating pulse amplitude was fixed. The measured pulse amplitude was saturated with the stimulating pulse amplitudes of over 6 mA while measuring inter-electrode distance. Under the same condition, measured pulse width was increased, and sensory nerve signal was initiated early. Sensory nerve signals, specially those of pulse amplitude, were distorted by a differential amplification method that commonly measures the human body signal. The experimental results indicate that the differential amplification method is required to be replaced when measuring nerve signals. Our observations suggested that the hyperpolarization of the action potential of the sensory nerve signal for preventing distortion could be used to clarify the correlation between the parameters of the sensory nerve signals and quantification of sensations.

Effects of Chronic Electrical Stimulation on Functional Recovery Following Laryngeal Reinnervation in the Rat (흰쥐에서 반회후두신경 손상 후 만성적 전기자극이 후두 기능 회복에 미치는 영향)

  • 김지연;조선희;한후재;박수경;신유리;정성민
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.11 no.2
    • /
    • pp.172-177
    • /
    • 2000
  • Background and Objectives : Until now, various attempts have been made fir reinnervating paralyzed vocal cord. Nevertheless, the most cases did not produce satisfactory outcome due to occurrence of synkinesis of larynx secondary to misdirected axonal regeneration. Accordingly, the purpose of this investigation is to learn the effect of chronic electrical stimulation on regeneration of the recurrent laryngeal nerve. Material and Methods : Using 20 healthy male Sprague-Dawley rats(250-300g) with normal vocal functions, transections were made on their left recurrent laryngeal nerves and then primary anastomosis were performed under the operating microscope and they were divided into an experimental group and a control group each having 10 rats. After the procedure, for the experimental group, chronic electrical stimulation was carried out until vocal cord movement was functionally recovered. for the control group, only chronic electrical stimulation was not given. Result : In experimental group, the number of functionally recovered rats was two and in control group, that of functionally recovered rate was same. The reorganization of posterior cricoarytenoid muscle motoneuron in nucleus ambiguus appeared in the case of directed reinnervation of recurrent laryngeal nerve. Conclusion : The chronic electrical stimulation does not a direct beneficial effect on the early functional recovery in rats with injured recurrent laryngeal nerve.

  • PDF

Effect of cholinergic and α2-adrenergic nerve on the isolated dog ileal smooth muscle by the electrical field stimulation (개 적출 회장 평활근의 field stimulation에 의한 cholinergic 및 α2-adrenergic 신경의 효과)

  • Kim, Joo-heon;Shim, Cheol-soo;Park, Sang-eun
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.2
    • /
    • pp.211-216
    • /
    • 1993
  • To elucidate the action of the cholinergic and ${\alpha}_2$-adrenergic nerve on the isolated ileal smooth muscle of the dog, effect a of electrical field stimulation were investigated on the pretreatment of the physostigmine; cholinestrase inhibitor, yohimbine; ${\alpha}_2$-adrenoceptor blocker, atropine ; cholinergic receptor blocker and phentolamine; non-selective $\alpha$-adrenoceptor blocker from physiograph. 1. The contractile response induced by electrical field stimulation was the frequency (2-40 Hz)-dependent manner. 2. The contractile response induced by electrical field stimulation was markedly increased by the pretreatment of physostigmine$(1{\mu}M)$; cholinestrase inhibitor. 3. The contractile response induced by electrical field stimulation was increased by the pretreatment of yohimbine$(1{\mu}M)$; ${\alpha}_2$-adrenoceptor blocker. These finding suggest that it was powerful excitatory action by cholinergic nerve and inhibitory action by ${\alpha}_2$-adrenergic nerve on ileal smooth muscle of the dog.

  • PDF

Studies of the Effects of Acupuncture Stimulation at Huatuo Jiaji(EX B2) Points on Axonal Regeneration of Injured Sciatic Nerve in the Rats (화타협척혈 침자극에 의한 손상 말초신경의 재생효과에 관한 연구)

  • Kim, Dae-Feel;Park, Young-Hoi;Keum, Dong-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.4
    • /
    • pp.39-61
    • /
    • 2008
  • Objectives : The present study was performed to investigate whether acupuncture stimulation in the rats affected regeneration properties of the injured sciatic nerve. A differential effect of acupuncture stimulation on the one point near the spinal nerve root controlling sciatic nerve activity and the other point in the peripheral area subordinated by injured nerve was compared. Materials and Methods: Rat sciatic nerves were injured by crush, and the effects on axonal regeneration on injured sciatic nerves were evaluated by acupuncture stimulation at two different regions. In proximal acupuncture stimulation group, acupuncture stimulation was performed on Huatuo Jiaji(EX B2) points located from L5 to S1 vertebral levels to stimulate the nearest spinal nerve root that innervates sciatic nerves. In distal acupuncture stimulation group, acupuncture stimulation was performed on Zusanli(ST 36) and Weizhong(BL 40) points to stimulate at peripheral area dominated by injured sciatic nerves. Acupuncture stimulation was given every other days for 1 or 2 weeks. Sciatic nerve tissues collected from acupuncture stimulation experimental groups, injury control group, and intact animal group were used for protein analysis by Western blotting or Hoechst nuclear staining. To determine axonal regeneration, Dil fluorescence dye was injected into the sciatic nerve 0.5 cm distal to the injury site in individual animal groups and Dil-labeled cells by retrograde tracing were measured in the DRG at lumbar 5 or in the spinal cord. DRG sensory neurons prepared from individual animal groups were used to measure the extent of neurite outgrowth and for immunofluorescence staining with anti-GAP-43 antibody. Results : Animal groups given proximal or distal acupuncture stimulation showed upregulation of GAP-43 and Cdc2 protein levels in the sciatic nerve at 7 days after injury. Cdk2 protein levels were strongly induced by nerve injury, but did not show changes by acupuncture stimulation. Phospho-Erk1/2 protein levels were elevated by acupuncture stimulation above those present in the injury control animals. These increase in regeneration-associated protein levels appeared to be related with increase cell proliferation in the injured sciatic nerves. Hoechst 33258 staining of sciatic nerve tissue to visualize nuclei of individual cells showed increased Schwann cell number in the distal portion of the injured nerve 7 and 14 days after injury and further increases by acupuncture stimulation particularly at the proximal position. Measurement of axonal regeneration by retrograde tracing showed significantly increased Dil-labeled cells in proximal acupuncture stimulation group compared to distal acupuncture stimulation group and injury control group. Finally, an evaluation of axonal regeneration by retrograde tracing showed increased number of Dil labeled cells in the DRG at lumbar 5 or in the ventral horn of the spinal cord at lower thoracic level at 7 days after nerve injury. Conclusions : The present data show that the proximal acupuncture stimulation at Huatuo Jiaji(EX B2) points governing injured sciatic nerves was more effective for axonal regeneration than the distal acupuncture stimulation. Further studies on functional recovery or associated molecular mechanisms should be critical for developing animal models and clinical applications.

Influencing of Electrical Stimulation to Cervicothoracic Sympathetic Ganglion on the Temperature Change of Body Surface (경흉교감신경절부의 전기자극의 체표면 체열변화에 미치는 영향)

  • Hwang Tae-Yeun;Park Rae-Joon;Kim Tae-Yul;Kim Yong-Nam
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.2
    • /
    • pp.121-132
    • /
    • 2000
  • This study was carried out to determine the influencing of electrical stimulation to cervicothoracic sympathetic ganglion(CTSG; stellate ganglion) u the sympathetic tone. For the purpose of this study. the stimulation was given to both the interferential current stimulation(ICS: AMF 100Hz) group consisting of 10 person(males 8, females 2) and the transcutaneous nerve electrical stimulation(TENS: 100 Hz) group of 10(males 7, females 3) in the right side of the trachea with probe electrodes. Then. the temperature changes on the surfaces of the forehead. cheek, neck and internal ear of cephalocervix, which is subject to the influence of the cervicothoracic sympathetic ganglion, and the palm. which is the end of the upper limbs. measured before. immediately alter. 10 minutes after and 20 minutes after experiment. The results are summarized as follows. 1. The emergence of remarkable Horner's symptoms which appear due to the changes of the tone of cervicothoracic sympathetic ganglion was not seen. However, in the interferential current stimulation group there were two felt the sense of warmth in the facial region and one person who felt it in the upper limbs, and in the transcutaneous nerve electrical stimulation group there was each one person who felt the sense of warmth in the facial region and in the upper limbs, respectively. Both groups have each one person who felt the sense of oppression in the eyelids. Three persons of the interferential current stimulation group and two persons of the transcutaneous nerve electrical stimulation group have the sense of hoarse voice or numbness in the neck. These are the symptoms that appeared during stimulation, so it is difficult for them to be considered as the direct effects of the changes of the tone of cervicothoracic sympathetic ganglion. 2. The t-test was performed to determine the significance between the right, which is the experimental side, and the left, which is the non-experimental side. Significance between the right, which is the experimental side, and the left, which is the non-experimental side. Significant changes were seen in the necks of the interferential current stimulation group and in the cheeks and internal ears of the transcutaneous nerve electrical stimulation immediately after experiment(P<.05). And the interferential current stimulation group showed a very high significance in the cheeks immediately after experiment and in the necks ten minutes after experiment(p<.01). Therefore, it could be seen that the electrical stimulation had an influencing on the changes of body temperature of the cephalocervix. 3. In both the interferential current stimulation group and the transcutaneous nerve electrical stimulation group, the forecheads, checks and necks of the cephalocervix in the experimental side(right) rather than the non-experimental side(left) had mostly a statistically significant rise in temperature immediately after experiment. The one-way ANOVA was carried out to determine the temperature change of on the surface of the body with the lapse of time; before, immediately after, ten minutes after and tewenty minutes after experiment. But no statistical significance was found from both the right and left sides.

  • PDF

Reflex Responses of the Extraocular Muscles upon Ampullary Nerve Stimulation in Rabbits (가토반규관신경자극(家兎半規管神經刺戟)에 대(對)한 외안근(外眼筋)의 반응(反應)에 관(關)하여)

  • Kim, Sa-Won
    • The Korean Journal of Physiology
    • /
    • v.4 no.1
    • /
    • pp.59-67
    • /
    • 1970
  • In recent observations on vestibular eye movements in mammals, reported by several different workers, it was indicated that the pattern of reflex eye movement from semicircular canal nerve stimulation in rabbits was different from that observed in the other species such as cats and dogs. Observing the different anatomical features of the extraocular muscles of rabbits, Kim ascribed the different pattern of eye movement of rabbits to the functional difference of inferior and superior oblique muscles from those of other species. Present experiment was carried out to elucidate a physiological mechanism underlying in such particular pattern of reflex eye movement in rabbits. An individual canal nerve was selectively stimulated, under a dissecting microscope, by a fine electrode induced into an ampulla through a hole provided on the wall of corresponding osseous canal, and responses of the extraocular muscles were checked by recording the isotonic changes of muscle length. Following results were obtained. 1. Direct stimulation of the superior or inferior oblique muscles Produced upward or downward movement of the eye turning toward medial side respectively. 2. Stimulation of the unilateral canal nerve Produced a marked contraction of a main contracting ocular muscle and simultaneous relaxation of an antagonistic muscle in both eyes. Less potent contraction of an additional ocular muscle was observed and it appeared to augment the function of the main contracting muscle in the ipsilateral eye. 3. Stimulation of superior semicircular canal nerve caused a primary contraction of superior rectus, synergic contraction of superior oblique and relaxation of inferior rectus in ipsilateral eye. Contraction of inferior oblique and relaxation of superior oblique were observed in the contralateral eye. 4. Stimulation of lateral semicircular canal nerve produced a primary contraction of medial rectus, synergic contraction of superior oblique and relaxation of lateral rectus in the ipsilateral eye. Contraction of lateral rectus and relaxation of medial rectus were observed in the contralateral eye. 5. Stimulation of inferior semicircular canal nerve produced a primary contraction of superior oblique, synergic contraction of superior rectus and relaxation of inferior oblique in the ipsilateral eye. Contraction of. inferior rectus and relaxation of superior rectus were observed in the contralateral eye. 6. Upon stimulation of individual canal nerve, the pattern of eye movement in rabbits is different from those of cats, however, the responses of the extraocular muscles appear to be similar in two species. Therefore, it is concluded that the different Pattern of eye movement in both species are not due to the possible difference of vestibule-ocular reflex pathways but to the functional difference of superior and inferior oblique muslces.

  • PDF

Changes in Sympathetic Nervous System Responses of Healthy Adult Women with Changes in the Stimulus Intensity of High Frequency Transcutaneous Electrical Nerve Stimulation (고빈도 경피신경전기자극의 자극강도에 따른 정상 성인여성 교감신경성 반응의 변화)

  • Choi, Yoo-Rim;Lee, Jeong-Woo
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.1
    • /
    • pp.61-66
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the change in sympathetic nervous system responses of healthy adult women with changes in stimulus intensity of high frequency transcutaneous electrical nerve stimulation. Methods: Twenty-four healthy subjects (women) received high frequency electrical stimulation of the forearm. The subjects were randomly assigned to one of two groups; a low intensity stimulation group (n=12) and a high intensity stimulation group (n=12). The electrode attachment was arranged on the forearm of the dominant arm and the electricity stimulus time was 20 minutes. Measured items included skin conductance, pulse rate, skin temperature, and respiration rate. Each was measured at 4 times. Results: Skin conductance and skin temperature showed significant group by time interactions, though there were no significant group and time effects. There were no significant differences according to time, group effect, and a group by time interaction in pulse and respiration rates. Conclusion: High frequency and high intensity electrical stimulation may be helpful for the improvement of sudomotor function through the activation of the sympathetic nervous system. Also, high frequency and low intensity electrical stimulation may be helpful for the reduction of sudomotor function via inhibition of the sympathetic nervous system.