• Title/Summary/Keyword: Nerve simulation

Search Result 44, Processing Time 0.027 seconds

Comparison of Impedance Parameters and Occupational Therapy Evaluation in the Paretic and Non-paretic Upper Extremity of Hemiplegic Stroke Patients

  • Yoo, Chan-Uk;Kim, Jaehyung;Hwang, Youngjun;Kim, Gunho;Shin, Yong-Il;Jeon, Gyerok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1980-1991
    • /
    • 2017
  • Many stroke patients undergoing rehabilitation therapy require a quantitative indicator for the evaluation of body function in paretic and non-paretic regions. In this study, the impedance parameters were acquired to assess the physical status in the upper extremity of thirty six stroke patients with hemiplegia caused by cerebral hemorrhage (10 patients) and cerebral infarction (26 patients), using bioelectrical impedance. Prediction marker (PM), phase angle (PA), PM/PA, and resistance (R) versus reactance ($X_c$) were utilized to evaluate the functional status of the paretic and non-paretic regions. In addition, the hand grip strength (HGS) and the pinch strength (lateral, palmer, tip) were measured on the upper extremity of hemiplegic stroke patients. PM was distributed in inversely proportional to HGS, but PA was distributed in proportional to HGS. However, there were a number of patients with HGS of 0, regardless of the impedance parameters (PM, PA, R vs. $X_c$). Paretic and non-paretic status in upper extremity of these patients could not be analyzed using impedance parameters. At the rehabilitation therapist's instructions, they were unable to move the hand and fingers of the paretic upper extremity by cranial nerve damage, motor nerve damage, and severe cognitive decline.

Planning of Dental Implant Placement Using 3D Geometric Processing and Finite Element Analysis (3차원 기하 처리와 유한요소 분석을 이용한 치아 임플란트 식립 계획 수립)

  • Park, Hyung-Wook;Park, Chul-Woo;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.253-261
    • /
    • 2012
  • In order to make dental implant surgery successful, it is important to perform proper planning for dental implant placement. In this paper, we propose a decent approach to dental implant placement planning based on geometric processing of 3D models of jawbones, a nerve curve and neighboring teeth around a missing tooth. Basically, the minimum enclosing cylinders of the neighboring teeth around the missing tooth are properly used to determine the position and direction of the implant placement. The position is computed according to the radii of the cylinders and the center points of their top faces. The direction is computed by the weighted average of the axes of the cylinders. For a cylinder whose axis passes the position along the direction, its largest radius and longest length are estimated such that it does not interfere with the neighboring teeth and the nerve curve, and they are used to select the size and type of an implant fixture. From the geometric and spatial information of the jawbones, the teeth and the fixture, we can construct the 3D model of a surgical guide stent which is crucial to perform the drilling operation with ease and accuracy. We have shown the validity of the proposed approach by performing the finite element analysis of the influence of implant placement on bone stress distribution. Adopted in 3D simulation of dental implant placement, the approach can be used to provide dental students with good educational contents. It is also expected that, with further work, the approach can be used as a useful tool to plan for dental implant surgery.

Prototype Development of a Robotic System for Skull Drilling (로봇을 이용한 두개골 드릴링 시스템의 프로토타입 개발)

  • Chung, Yun-Chan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.198-207
    • /
    • 2012
  • This paper presents an overview of automated robotic system for skull drilling, which is performed to access for some neurosurgical interventions, such as brain tumor resection. Currently surgeons use automatic-releasing cranial perforators. The drilling procedure must be performed very carefully to avoid penetration of brain nerve structures; however failure cases are reported. The presented prototype system utilizes both preoperative and intraoperative information. Preoperative CT image is used for robot path planning. A NeuroMate robot with a six-DOF force sensor at the end effector is used for intraoperative operation. Intraoperative cutting force from the force sensor is the key information to revise an initial registration and preoperative path plans. Some possibilities are verified by path simulation but cadaver experiments are required for validation of this prototype.

A Modelling of Normal and Abnormal EMG Silent Period Generation of Masseter Muscle (교근에서의 정상 및 비정상 근전도 휴지기 발생 모델링)

  • Kim Tae-Hoon;Jeon Chang-Ik;Lee Sang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.112-119
    • /
    • 2003
  • This paper proposes a model of SP(silent period) generation in masseter muscle by means of computer simulation. The model is based on the anatomical and physiological properties of trigeminal nervous system. In determining the SP generation pathway, evoked SPs of masseter muscle after mechanical stimulation to the chin are divided into normal and abnormal group. Normal SP is produced by the activation of mechanoreceptors in periodontal ligament. The activation of nociceptors contributes to the latter part of normal SP, abnormal extended SP is produced. As a result, the EMG signal generated by a proposed SP generation model is similar to both real EMG signal including normal SP and abnormal extended SP with TMJ patients. The result of this study have shown differences of SP generation mechanism between subjects both with and without TMJ dysfunction.

Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model (압반사 제어모델을 이용한 심혈관 시스템의 모델링 및 시뮬레이션)

  • Choi, B.C.;Eom, S.H.;Nam, G.K.;Son, K.S.;Lee, Y.W.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.165-170
    • /
    • 1997
  • In this paper, we consider the aortic sinus baroreceptor, which is the most representative baroreceptors sensing the variance of pressure in the cardiovascular system(CVS), and propose heart activity control model to observe the effect of delay time in heart period and stroke volume under the regulation of baroreflex in arotic sinus. The proposed heart activity baroreflex regulation model contains CVS electric circuit sub-model, baroreflex regulation sub-model and time delay sub-model. In these models, applied electric circuit sub-model is researched by B.C.Choi and the baroreflex regulation sub-model transforms the input, the arotic pressure of CVS electric circuit sub-model, to outputs, heart period and stroke volume by mathematical nonlinear feedback. We constituted the time delay sub-model to observe sensitivity of heart activity baroreflex regulation model by using the variable value to represent the control signal transmission time from the output of baroreflex regulation model to efferent nerve through central nervous system. The simulation object of this model is to observe variability of the CVS by variable value in time delay sub-model. As simulation results, we observe three patterns of CVS variability by the time delay. First, if the time delay is over 2.5 sec, arotic pressure, stroke volume and heart rate is observed nonperiodically and irregularly. Second, if the time delay is from between 0.1 sec and 0.25 sec, the regular oscillation is observed. Finally, if time delay is under 0.1 sec, then heart rate and arotic pressure-heart rate trajectory is maintained in stable state.

  • PDF

HEN Simulation of a Controlled Fluid Flow-Based Neural Cooling Probe Used for the Treatment of Focal and Spontaneous Epilepsy

  • Mohy-Ud-Din, Zia;Woo, Sang-Hyo;Qun, Wei;Kim, Jee-Hyum;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • Brain disorders such as epilepsy is a condition that affects an estimated 2.7 million Americans, 50,000,000 worldwide, approximately 200,000 new cases of epilepsy are diagnosed each year. Of the major chronic medical conditions, epilepsy is among the least understood. Scientists are conducting research to determine appropriate treatments, such as the use of drugs, vagus nerve stimulation, brain stimulation, and Peltier chip-based focal cooling. However, brain stimulation and Peltier chip-based stimulation processes cannot effectively stop seizures. This paper presents simulation of a novel heat enchanger network(HEN) technique designed to stop seizures by using a neural cooling probe to stop focal and spontaneous seizures by cooling the brain. The designed probe was composed of a U-shaped tube through which cold fluid flowed in order to reduce the temperature of the brain. The simulation results demonstrated that the neural probe could cool a 7 $mm^2$ area of the brain when the fluid was flowing atb a velocity of 0.55 m/s. It also showed that the neural cooling probe required 23 % less energy to produce cooling when compared to the Peltier chip-based cooling system.

Design of a Silicon Neuron Circuit using a 0.18 ㎛ CMOS Process (0.18 ㎛ CMOS 공정을 이용한 실리콘 뉴런 회로 설계)

  • Han, Ye-Ji;Ji, Sung-Hyun;Yang, Hee-Sung;Lee, Soo-Hyun;Song, Han-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.457-461
    • /
    • 2014
  • Using $0.18{\mu}m$ CMOS process silicon neuron circuit of the pulse type for modeling biological neurons, were designed in the semiconductor integrated circuit. Neuron circuiSt providing is formed by MOS switch for initializing the input terminal of the capacitor to the input current signal, a pulse signal and an amplifier stage for generating an output voltage signal. Synapse circuit that can convert the current signal output of the input voltage signal, using a bump circuit consisting of NMOS transistors and PMOS few. Configure a chain of neurons for verification of the neuron model that provides synaptic neurons and two are connected in series, were performed SPICE simulation. Result of simulation, it was confirmed the normal operation of the synaptic transmission characteristics of the signal generation of nerve cells.

Implant surgery based on computer simulation surgical stent and the assessment with the image fusion technique (컴퓨터 시뮬레이션 기반의 외과용 스텐트를 이용한 임플란트 시술과 영상융합기술을 이용한 평가)

  • Lee, Jee-Ho;Kim, Soung-Min;Paeng, Jun-Young;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.5
    • /
    • pp.402-407
    • /
    • 2010
  • Introduction: The planning of implant surgery is an important factor for the implant prosthesis. Stereolithographic (SLA) surgical stents based on a computer simulation are quite helpful for clinicians to perform the surgery as planned. Although many clinical and technical trials have been performed for computed tomography (CT)-guided implant stents to improve the surgical procedures and prosthetic treatment, there are still many problems to solve. We developed a system of a surgical guide based on 3 dimensional (3D) CT for implant therapy and achieved satisfactory results in the terms of planning and operation. Materials and Methods: Fifteen patients were selected and 30 implant fixtures were installed. The preoperative CT data for surgical planning were prepared after obtaining informed consent. Surgical planning was performed using the simulation program, Ondemend3D In2Guide. The stents were fabricated based on the simulation data containing information of the residual bone, the location of the nerve, and the expected design of the prostheses. After surgery with these customized stents, the accuracy and reproducibility of implant surgery were evaluated based on the computer simulation. The data of postoperative CT were used to confirm this system using the image fusion technique and compare the implant fixtures between the planned and implanted. Results: The mean error was 1.18 (${\pm}0.73$) mm at the occlusal center, 1.23 (${\pm}0.67$) mm at the apical center, and the axis error between the two fixtures was $3.25^{\circ}C$ (${\pm}3.00$). These stents showed superior accuracy in maxilla cases. The lateral side error at the apical center was significantly different from the error at the occlusal center but there were no significant differences between the premolars, 1st molars and 2nd molars. Conclusion: SLA surgical stents based on a computer simulation have the satisfactory accuracy and are expected to be useful for accurate planning and surgery if some errors can be improved.

Association Between Vertebrobasilar Insufficiency and Cervicogenic Headache: Hypothetical Approach Towards Etiopathogenesis of Headache

  • Kaur, Aninditya;Rakesh, N.;Reddy, Sujatha S.;Thomas, Nithin;Nagi, Ravleen;Patil, Deepa Jatti
    • Journal of Oral Medicine and Pain
    • /
    • v.45 no.4
    • /
    • pp.97-109
    • /
    • 2020
  • Purpose: Cervicogenic headache (CGH) is pain referred to the head/ face from the structures in vicinity of upper cervical spinal nerves via trigeminocervical pathway. Ponticulus Posticus (PP) and Elongated Styloid Process (ESP) are anatomical structures that cause compression of vasculature present around upper cervical nerve plexus. Recently, computational fluid dynamics (CFD) has shown to play an essential role in identification of these high-pressure zones in the brain. The aim of this research is to study the association of ESP and PP in patients with CGH and to develop a hypothesis by CFD to analyse vertebrobasilar insufficiency as a contributing factor in occurrence of CGH. Methods: Retrospective analysis of 4500 full skull CBCT scans was done for the presence of partial or complete PP and length of Styloid Process (SP). Research was divided into two phases; In first Preliminary Phase, 150 scans that showed the presence of PP and ESP were analysed, and only 134 patients gave consent to fill the questionnaire containing 96 question items pertaining to symptoms associated with CGH. In the second phase, simulation of Vertebral and Carotid Artery was done using Fluent 14.5 Software and by CFD, pressure distribution on arteries was obtained that helped to identify high pressure regions. Results: Both PP and ESP showed a statistically significant association with CGH (p<0.001). By CFD analysis, both steady and transient phases of simulation showed drop in pressure due to constriction of internal carotid and vertebral artery by ESP and PP respectively and were found to decrease the volume of blood reaching the brain, 0.12 /0.13 mL and 0.06 mL respectively. Conclusions: Our analysis proves ESP and PP as contributing factors towards CGH. Hence for proper diagnosis and management of headache disorders, clinicians should have adequate knowledge about these anatomical structures and their resulting clinical symptoms.

Injection Molding of Vertebral Fixed Cage Implant

  • Yoo, Kyun Min;Lee, Seok Won;Youn, Jae Ryoun;Yoon, Do Heum;Cho, Yon Eun;Yu, Jae-Pil;Park, Hyung Sang
    • Fibers and Polymers
    • /
    • v.4 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • A vertebral cage is a hollow medical device which is used in spine forgery. By implanting the cage into the spine column, it is possible to restore disc and relieve pressure on the nerve roots. Most cages have been made of titanium alloys but they detract the biocompatibility. Currently PEEK (polyether ether ketone) if applied to various implants because it has good properties like heat resistance, chemical resistance, strength, and especially biocompatibility. A new shape of vertebral cage is designed and injection molding of PEEK is considered for production. Before injection molding of the cage, it is needed to evaluate process conditions and properties of the final product. Variables affecting the shrinkage of the cage are considered, e.g., injection time, packing pressure, mold temperature, and melt temperature. By using the numerical simula-tion program, MOLDFLOW, several cases are studied. Data files obtained by MOLDFLOW analysis are used for stress anal-ysis with ABAQUS, and shrinkage and residual stress fields are predicted. With these results, optimum process conditions are determined.