• Title/Summary/Keyword: Nerve regeneration

Search Result 170, Processing Time 0.027 seconds

Valproic Acid Effect in Nerve Regeneration Using Gore-Tex® Tube Filled with Skeletal Muscle (골격근섬유로 채워진 Gore-Tex® 도관을 이용한 신경재생에 있어서 Valproic Acid의 효과)

  • Kang, Nak Heon;Oh, Hyeon Bae;Lee, Ki Ho;Kim, Jong Gu
    • Archives of Plastic Surgery
    • /
    • v.33 no.2
    • /
    • pp.213-218
    • /
    • 2006
  • As the large defect of peripheral nerve occurs, the autologous nerve graft is the most ideal method but it has many limitations due to donor site morbidities. Various materials have been developed for the nerve defect as the conduits, but none of these materials is satisfactory. Among them, $Gore-Tex^{(R)}$ tube seems to be one of the most ideal nerve conduit materials at peripheral nerve defect. Many researches have focused on finding the neurotrophic factors. It is recently demonstrated that Valproic acid(VPA) has an effect of axonal regeneration as a neurotrophic factor without enzymatic degradation and toxicity problems. The purpose of this study is to evaluate the effect of VPA on the nerve regeneration at the peripheral nerve defect. A 10 mm gap of rat sciatic nerve was made and $Gore-Tex^{(R)}$ tube filled with biceps femoris muscle was placed at the nerve defect site. We let the rat take VPA as drinking water in experimental group and did not give VPA to the control group. We estimated the results as electrophysiologic and histological aspects for 16 weeks after the surgery. The nerve conduction velocity, total myelinated axon count, myelin sheath thickness and mean nerve fiber diameter significantly increased in VPA-treated experimental group when compared to the control (p < 0.05). From the above results, we conclude that VPA promotes the nerve regeneration at the peripheral nerve defect site. It is suggested that $Gore-Tex^{(R)}$ tube filled with skeletal muscle and VPA administration may be a good substitute for autologous nerve graft.

Neural Ablation and Regeneration in Pain Practice

  • Choi, Eun Ji;Choi, Yun Mi;Jang, Eun Jung;Kim, Ju Yeon;Kim, Tae Kyun;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.29 no.1
    • /
    • pp.3-11
    • /
    • 2016
  • A nerve block is an effective tool for diagnostic and therapeutic methods. If a diagnostic nerve block is successful for pain relief and the subsequent therapeutic nerve block is effective for only a limited duration, the next step that should be considered is a nerve ablation or modulation. The nerve ablation causes iatrogenic neural degeneration aiming only for sensory or sympathetic denervation without motor deficits. Nerve ablation produces the interruption of axonal continuity, degeneration of nerve fibers distal to the lesion (Wallerian degeneration), and the eventual death of axotomized neurons. The nerve ablation methods currently available for resection/removal of innervation are performed by either chemical or thermal ablation. Meanwhile, the nerve modulation method for interruption of innervation is performed using an electromagnetic field of pulsed radiofrequency. According to Sunderland's classification, it is first and foremost suggested that current neural ablations produce third degree peripheral nerve injury (PNI) to the myelin, axon, and endoneurium without any disruption of the fascicular arrangement, perineurium, and epineurium. The merit of Sunderland's third degree PNI is to produce a reversible injury. However, its shortcoming is the recurrence of pain and the necessity of repeated ablative procedures. The molecular mechanisms related to axonal regeneration after injury include cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules, and their receptors. It is essential to establish a safe, long-standing denervation method without any complications in future practices based on the mechanisms of nerve degeneration as well as following regeneration.

Experimental Study for Nerve Regeneration Using Tubes Filled with Autogenous Skeletal Muscle in a Gap of Rabbit Sciatic Nerves (백색 가토 좌골 신경의 신경 결손부위에서 자가 골격근 충진 도관을 이용한 신경재생 연구)

  • Lee, Jun-Mo;Shin, Sung-Jin;Seo, Jeong-Hwan;Song, Chang-Ho
    • Archives of Reconstructive Microsurgery
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • The bridging of nerve gaps is still one of the major problems in peripheral nerve surgery. To evaluate the role of silicon tube in nerve regeneration, gaps were made by resection of tibial components of sciatic nerves of twenty-five New Zealand rabbits. The gaps were divided into five groups. In group I, the tibial components of sciatic nerves were isolated and the incision immediately closed. In group II, 1-cm segments of the nerve were removed and the silicon tubes filled with autogenous skeletal muscle were sutured in place. In group III, 1-cm segments of the nerve were removed and the silicon tubes filled without muscle were sutured in place. In group IV, 2-cm segments of the nerve were removed and the silicon tubes filled with autogenous skeletal muscle were sutured in place. In group V, 2-cm segments of the nerve were removed and the silicon tubes filled without muscle were sutured in place. At 16th week, the eletromyography, the light and transmission electron microscopy were performed. Nerve conduction study stimulating sciatic nerve proximal to the lesion and recording at gastrocnemius muscle showed that the compound muscle action potentials of the group II with 1 cm nerve defect filled with muscle were higher amplitudes than the group III without muscle. Compound muscle action potentials of the group IV with 2 cm defect filled with muscle showed similar results in comparison with the group V. The light and transmission electron microscpy showed that a good morphological pattern of nerve regeneration in 1 cm gap than 2 cm and in gap with muscle than gap without muscle.

  • PDF

ACTION POTENTIAL DIFFERENCES AND REGENERATION EFFECT AFTER MICRONEURAL SUTURE TECHNIQUE AND FIBRIN ADHESIVE TECHNIQUE IN RAT SCIATIC NERVE (신경문합술과 피브린접합술 후 활동전위차 및 신경재생 효과)

  • Jung, Tae-Young;Kim, Uk-Kyu;Chung, In-Kyo;Shin, Sang-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.427-435
    • /
    • 2005
  • The purpose of this study was to compare clinical availability of fibrin adhesive technique with microneural suture technique. We applicated fibrin adhesive technique and microneural suture technique on cut sciatic nerve in rat and used to Compound muscle action potential of rat thigh muscle compartment and histologic finding for comparision of clinical availability. The results were as following. 1. Using latency and amplitude in Compound muscle action potential test, we compared microneural suture technique with fibrin adhesive technique for nerve regeneration effect. the means was slightly different between two method. but there's no statistically significant differences. 2. Histologic finding was similar in microneural suture technique and fibrin adhesive technique for regeneration of axon and myelin sheath in destruction site after nerve anastomosis. These results showed that the efficacy of fibrin adhesive technique was similar to that of conventional microneural suture technique. Moreover, fibrin adhesive technique is decreased operating time and imporved of incapability of accessment in conventional suture technique. Therefore this technique is a useful method to nerve anastomosis in nerve enervation and neurotransplantation.

A Study in Bridging Sciatic Nerve Defects with Combined Skeletal Muscle and Vein Conduit in Rats (백서의 좌골신경에서 정맥 및 골격근을 이용한 결손신경 봉합술에 대한 연구)

  • Lee, Jun-Mo
    • Archives of Reconstructive Microsurgery
    • /
    • v.6 no.1
    • /
    • pp.29-38
    • /
    • 1997
  • A peripheral nerve when approximation of the ends imparts tension at the anastomosis and with a relatively long segment defect after excision of neuroma and neurofibroma cannnot be repaired by early primary suture. The one of the optimistic reconstruction method of severed peripheral nerves is to restore tension-free continuity at the repair site putting an autogenous nerve graft into the neural gap despite of ancipating motor or sensory deficit of the donor nerve area. To overcome the deficit of the autogenous nerve graft, several other conduits supplying a metabolically active environment which is able to support axon regeneration and progression, providing protection against scar invasion, and guiding the regrowing axons to the distal stump of the nerve have been studied. An author have used ipsilateral femoral vein, ipsilateral femoral vein filled with fresh thigh muscle, and autogenous sciatic nerve for the sciatic nerve defect of around 10 mm in length to observe the regeneration pattern in rat by light and electron microscopy. The results were as follows. 1. Light microscopically regeneration pattern of nerve fibers in the autogenous graft group was more abundant than vein graft and vein filled with muscle group. 2. On ultrastructural findings, the proxial end of the graft in various groups showed similar regenerating features of the axons, myelin sheaths, and Schwann cells. The fascicular arrangement of the myelinated and unmyelinated fibers was same regardless of the type of conduits. There were more or less increasing tendency in the number and the diameter of myelinated fibers correlated with the regeneration time. 3. In the middle of the graft, myelinated nerve fibers of vein filled with muscle group were more in number and myelin sheath was thinner than in the venous graft, but the number of regenerating axons in autogenous nerve graft was superior to that in both groups of the graft. The amount of collagen fibrils and amorphous materials in the endoneurial space was increased to elapsed time. 4. There was no difference in regenerating patterns of the nerve fibers of distal end of the graft. The size and shape of the myelinated nerve fbers were more different than that of proximal and middle portion of the graft. From the above results, the degree of myelination and regenerating activity in autogenous nerve is more effective and active in other types of the graft and there were no morphological differences in either ends of the graft regardless of regeneration time.

  • PDF

EXPERIMENTAL STUDY OF PERIPHERAL NERVE REGENERATION BY USING NON-TUBULAR NATURAL CELLULOSE MEMBRANE NERVE CONDUIT (비관형 천연 셀룰로오스막 도관을 이용한 말초신경 재생에 대한 실험적 연구)

  • Kim, Soung-Min;Lee, Jong-Ho;Lee, Suk-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.4
    • /
    • pp.295-307
    • /
    • 2006
  • Styela clava, called non-native tunicate or sea squirt, is habitat which include bays and harbors in Korea and several sites in the sea faced world. We fabricate cellulose membrane nerve conduit (CMNC) from this native sea squirt skin, and evaluate the capacity of promoting peripheral nerve regeneration in the rat sciatic nerve defect model. After processing the pure cellulose membrane from the sea squirt skin as we already published before, CMNC was designed as a non-tubular sheet with 14 mm length and 4 mm width. Total eleven male Spraque-Dawley rats (12 weeks, weighing 250 to 300g) were divided into sham group (n=2), silicone tube grafted control group (n=3) and experimental group (n=6). Each CMNC grafted nerve was evaluated after 4, 8 and 12 weeks in the experimental group, and after 12 weeks, sciatic function was evaluated with sciatic function index (SFI) and gait analysis, and histomorphology of nerve conduit and the innervated tissues of sciatic nerve were all examined using image analyzer and electromicroscopic methods in the all groups. The regenerated axon and nerve sheath were found only in the inner surface of the CMNC after 4 weeks and became more thicker after 8 and 12 weeks. In the TEM study, CMNC grafted group showed more abundant organized myelinated nerve fibers with thickened extracellular matrix than silicone conduit grafted group after 12 weeks. The sciatic function index (SFI) and ankle stance angle (ASA) in the functional evaluation were $-47.2{\pm}3.9$, $35.5^{\circ}{\pm}4.9^{\circ}$ in CMNC grafted group (n=2) and $-80.4{\pm}7.4$, $29.2^{\circ}{\pm}5.3^{\circ}$ in silicone conduit grafted group (n=3), respectively. And the myelinated axon was 41.59% in CMNC group and 9.51% in silicone conduit group to the sham group. The development of a bioactive CMNC to replace autogenous nerve grafts offers a potential and available approach to improved peripheral nerve regeneration. As we already published before, small peptide fragment derived from the basement membrane matrix proteins of squirt skin, which is a kind of anchoring protein composed of glycocalyx, induced the effective axonal regeneration with rapid growth of Schwann cells beneath the inner surface of CMNC. So the possibilities of clinical application as a peripheral nerve regeneration will be able to be suggested.

Cellular and molecular change including nerve regeneration after peripheral nerve injury (말초신경 손상 후 재생과 관련된 세포적, 분자적 변화)

  • Baek Su-Jeong;Kim Dong-Hyun;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.3
    • /
    • pp.415-432
    • /
    • 2000
  • In mammals. axotomy of peripheral nerve leads to a complex. These events include swelling of cell body, disappearance of Nissl substance. Proximal and distal axon undergoes a variable deriable degree of traumatic degeneration and wallerian degeneration, respectively. Nerve injury may result in cell death or regeneration. Molecular changes include proliferation of Schwann cells, upregulation of neurotropism, neural cell adhesion molecules and cytokine. Also growth cone plays an essential role in axon guidance through interaction of cytoskeleton. We review cellular and molecular events after nerve injury and describe nerve regeneration and associated proteins.

  • PDF

Proposed Mechanisms of Photobiomodulation (PBM) Mediated via the Stimulation of Mitochondrial Activity in Peripheral Nerve Injuries

  • Choi, Ji Eun
    • Medical Lasers
    • /
    • v.10 no.4
    • /
    • pp.195-200
    • /
    • 2021
  • Evidence shows that nerve injury triggers mitochondrial dysfunction during axonal degeneration. Mitochondria play a pivotal role in axonal regeneration. Therefore, normalizing mitochondrial energy metabolism may represent an elective therapeutic strategy contributing to nerve recovery after damage. Photobiomodulation (PBM) induces a photobiological effect by stimulating mitochondrial activity. An increasing body of evidence demonstrates that PBM improves ATP generation and modulates many of the secondary mediators [reactive oxygen species (ROS), nitric oxide (NO), cyclic adenosine monophosphate (cAMP), and calcium ions (Ca2+)], which in turn activate multiple pathways involved in axonal regeneration.

A Prior Study on the Effect of Samul-tang to Regeneration of Injured Peripheral Nerve Fiber (사물탕(四物湯)이 손상된 말초신경섬유 재생에 미치는 효과에 대한 사전 연구)

  • Lee, Ki-Tae;Yu, Byeong-Chan;Kim, Yoon-Sik;Seol, In-Chan
    • Journal of Haehwa Medicine
    • /
    • v.14 no.2
    • /
    • pp.107-112
    • /
    • 2005
  • Peripheral axons in vertebrate animals can regenerate after nerve injury and accomplish its functional recovery. Numerous studies have revealed that diverse molecular factors are induced during axonal regeneration and their potential roles in axonal regeneration have been studied. Examples is N-CAM, L1, P0, nerve growth factors, GAP-43 and so forth. However, most of the studies on axonal regeneration have been primarily focused on axon fiber regrowth and elucidating molecular factors, and relatively less is known about functional recovery. Also, specific drugs or drug components used in the oriental medicine in relation to nerve fiber regeneration have not been known. And thus, in the present, a study on the effect of Samul-tang components and Samul-tang extracts to regeneration of peripheral axon fiber is underway by immunofluorescence staining. Therefore, this prior application of Samul-tang with documents consideration is reported with a plea for further investigation.

  • PDF

Animal Model for the Evaluation of Repair of Injured Inferior Alveolar Nerve with Nerve Growth Factor

  • Lee, Jae-Yoon;Park, Suhyun;Heo, Hyun-A;Pyo, Sung-Woon
    • Journal of Korean Dental Science
    • /
    • v.6 no.2
    • /
    • pp.58-66
    • /
    • 2013
  • Purpose: The inferior alveolar nerve (IAN) can be damaged as a result of minor oral surgical procedure such as third molar extraction or implant placement. Repair of the injured IAN involves difficulty of access, and research studies are limited to elucidating the process of regeneration by surgical methods. This study sought to establish the rabbit animal model to apply polymeric membrane functionalized with nerve growth factor after a crush lesion for the evaluation of nerve regeneration using the electrophysiologic method. Materials and Methods: The IAN of 2 adult male New Zealand white rabbits (4 nerves) were exposed bilaterally, and crush injury rendered by jeweler's forceps was applied. Nerve conduction velocity was examined electrophysiologically using electromyography before, after, and 4 weeks after the crush injury. To evaluate the regeneration, the pattern of action potential of IAN was recorded, and the characteristics of neurons were histologically observed. Result: After the crush injury, afferent activity decreased in the injured group. Electromyography could not be recorded after four weeks because tissues surrounding the injured nerve collapsed. Decrease in the mean number of axons was observed in the injured part with membrane. Conclusion: Despite the limited result, the present animal model study may provide a possible way to research on the methods of enhancing the recovery of nerve injuries in clinical situations. For clinically widespread acceptance, however, it should gain more consecutive and scientific evidences.