• 제목/요약/키워드: Nerve

검색결과 4,932건 처리시간 0.031초

우슬 추출물이 흰쥐 좌골신경 손상 후 좌골신경의 기능회복에 미치는 영향 (Effects of Aqueous Extract of Achyranthes Japonica on Functional Recovery in Sciatic Nerve after Crushed Sciatic Nerve Injury in Rats)

  • 이마성;송윤경;임형호
    • 한방재활의학과학회지
    • /
    • 제21권2호
    • /
    • pp.143-158
    • /
    • 2011
  • Objectives : Peripheral nerve injuries are commonly encountered clinical problem and often result in severe functional deficits. The aim of this study is to evaluate the effects of aqueous extract of Achyranthes japonica(AJ) on functional recovery in sciatic nerve after crushed sciatic nerve injury. Methods : In the present study, the animals in the AJ-treated groups received the aqueous extract of AJ at the respective doses orally for 13 consecutive days. In order to assess the effects of the aqueous extract of AJ on function recovery in crushed sciatic nerve injury, sciatic functional index(SFI) was performed. c-Fos expression in the paraventricular nucleus(PVN) and ventrolateral periaqueductal gray(vIPAG), and neurofilament, and the expressions of brain-derived neurotrophic factor(BDNF), nerve growth factor(NGF) following crushed sciatic nerve injury in rats were investigated. For this, immunohistochemistry and western blot were performed. Results : In the present study, crushed sciatic nerve injury showed characteristic gait changes showing decrease of SFI value and treatment with the aqueous extract of AJ significantly enhanced the SFI value. Neurofilament expression in the sciatic nerve was decreased by crushed sciatic nerve injury and treatment with the AJ increased neurofilament expression. The expressions of BDNF and NGF in the sciatic nerve were increased following crushed sciatic nerve injury and treatment with the AJ significantly controlled the sciatic nerve injury-induced increment of BDNF and NGF expressions. c-Fos expressions in the PVN and vIPAG were increased following crushed sciatic nerve injury and treatment with the AJ significantly suppressed the sciatic nerve injury-induced increment of c-Fos expressions. Conclusions : These results suggest that AJ treatment after crushed sciatic nerve injury is effective in the functional recovery by enhancing axonal regeneration and suppressing of pain.

말초신경 결손시 신경도관으로서 Gore-Tex® 도관의 유용성 (The Availability of Gore-Tex® Tube as Nerve Conduit at the Peripheral Nerve Defect)

  • 이기호;오상하;이승렬;강낙헌
    • Archives of Plastic Surgery
    • /
    • 제32권5호
    • /
    • pp.613-618
    • /
    • 2005
  • When a large peripheral nerve defect occurs, an autologous nerve graft is the most ideal method of recinstruction. But an autologous nerve graft has many limitations due to donor site morbidities. Many previous focused on finding the ideal nerve conduit. Among them, $Gore-Tex^{(R)}$ has several advantages over other conduits. It can be manipulated to a suitable size, does not collapse easily, and it is a semi- permeable material that contain pores. A round shaped nerve can be newly formed because of its smooth inner surface. The purpose of this study was to evaluate the availability of $Gore-Tex^{(R)}$ tube as a nerve conduit at the peripheral nerve defect in the rat sciatic nerve. The 10 mm nerve gap was made in each group. A $Gore-Tex^{(R)}$ tube filled with skeletal muscle was inserted and autologous nerve graft was harvested, respectively. In the experimental group, we placed a 0.5 mm thickness, $30{\mu}m$ pored, 1.8 mm in diameter and 14 mm length tube with skeletal muscle inserted inside. In the control group, the nerve gap was inserted with a rat sciatic nerve. We estimated the results electrophysiologically and histologically to 16 weeks postoperatively. Results in the nerve conduction velocity, total myelinated axon count, myelin sheath thickness and mean nerve fiber diameter, the experimental group was substantially lower than that of the control group, but the statistic difference was not significant (p<0.05). The morphology was very similar in both groups, microscopically. From the above results, We conclude that $Gore-Tex^{(R)}$ qualifies as an ideal nerve conduit. It is suggested that $Gore-Tex^{(R)}$ tube filled with skeletal muscle may, substitute for an autologous nerve graft.

안면신경 침범시의 수술적 처치 (Surgical Dilemma of Facial Nerve Invasion)

  • 노영수
    • 대한두경부종양학회지
    • /
    • 제24권1호
    • /
    • pp.9-14
    • /
    • 2008
  • The most important concern to do parotidectomy is correct identification of the facial nerve and preservation of the nerve function. Many descriptions for the localization and branching types of the facial nerve trunk have existed. During the parotid surgery, it is necessary to have knowledges about the incidence and prognostic aspect of a invasion of the facial nerve by the parotid tumors. The method of the dissection and the surgical extent of the parotid gland would be decided not only by the anatomic variation of the facial nerve. but also the size and location of the tumor. Invasion of the facial nerve in parotid malignancies is the most significant factors affecting the prognosis, so radical parotidectomy which consists of the total extirpation of the parotid gland in conjunction with resection of the facial nerve is often required for proper management. Radical parotidectomy is advocated for the surgical treatment of high grade malignancies and in selective recurrent benign tumors intimately involving the facial nerve. Unfortunately, the morphologic and functional deficits created by sacrificing the facial nerve can be emotionally and physically traumatizing to the patient. Therefore, when the facial nerve is sacrificed, immediate reconstruction of the facial nerve should be necessary. Immediate nerve repair with direct anastomosis of the resected nerve ends or placement of a cable nerve graft provides the better cosmetic and functional results. Surgical resection remains the mainstay of treatment for cancer of the parotid gland, and there is general agreement that facial nerve should not be sacrificed unless the tumor is adherent to, or surrounds the nerve. The following statement is described general principles of troublesome management of the facial nerve during surgery for parotid tumor.

대이개신경 이식을 이용한 추체골 우회 안면신경 재건술 (One Stage Facial Nerve Reconstruction by Great Auricular Nerve Graft bypassing the Petrous Bone - A Case Report -)

  • 박현선;조경기;정상섭
    • Archives of Reconstructive Microsurgery
    • /
    • 제2권1호
    • /
    • pp.42-45
    • /
    • 1993
  • Although various methods had been reported for reanimination of facial nerve palsy, interposition nerve graft remains superior to other methods if there is a wide gap to be bridged. Dott described a excllent facial nerve reconstruction by sural nerve graft bypassing petrous bone. But his method needs two surgical fields and is performed in two stages. Authors desribe a traumatic facial nerve palsy treated by one stage facial nerve reconstruction that is performed in one surgical field by using a great auricular nerve interposition graft and bypass the petous bone.

  • PDF

수양명경근(手陽明經筋)의 해부학적(解剖學的) 고찰(考察) (Anatomy of Large Intestine Meridian Muscle in human)

  • 심영;박경식;이준무
    • Korean Journal of Acupuncture
    • /
    • 제19권1호
    • /
    • pp.15-23
    • /
    • 2002
  • This study was carried to identify the component of Large Intestine Meridian Muscle in human, dividing into outer, middle, and inner part. Brachium and antebrachium were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Large Intestine Meridian Muscle. We obtained the results as follows; 1. Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows. 1) Muscle; extensor digitorum tendon(LI-1), lumbrical tendon(LI-2), 1st dosal interosseous muscle(LI-3), 1st dosal interosseous muscle and adductor pollicis muscle(LI-4), extensor pollicis longus tendon and extensor pollicis brevis tendon(LI-5), adductor pollicis longus muscle and extensor carpi radialis brevis tendon(LI-6), extensor digitorum muscle and extensor carpi radialis brevis mucsle and abductor pollicis longus muscle(LI-7), extensor carpi radialis brevis muscle and pronator teres muscle(LI-8), extensor carpi radialis brevis muscle and supinator muscle(LI-9), extensor carpi radialis longus muscle and extensor carpi radialis brevis muscle and supinator muscle(LI-10), brachioradialis muscle(LI-11), triceps brachii muscle and brachioradialis muscle(LI-12), brachioradialis muscle and brachialis muscle(LI-13), deltoid muscle(LI-14, LI-15), trapezius muscle and supraspinous muscle(LI-16), platysma muscle and sternocleidomastoid muscle and scalenous muscle(LI-17, LI-18), orbicularis oris superior muscle(LI-19, LI-20) 2) Nerve; superficial branch of radial nerve and branch of median nerve(LI-1, LI-2, LI-3), superficial branch of radial nerve and branch of median nerve and branch of ulna nerve(LI-4), superficial branch of radial nerve(LI-5), branch of radial nerve(LI-6), posterior antebrachial cutaneous nerve and branch of radial nerve(LI-7), posterior antebrachial cutaneous nerve(LI-8), posterior antebrachial cutaneous nerve and radial nerve(LI-9, LI-12), lateral antebrachial cutaneous nerve and deep branch of radial nerve(LI-10), radial nerve(LI-11), lateral antebrachial cutaneous nerve and branch of radial nerve(LI-13), superior lateral cutaneous nerve and axillary nerve(LI-14), 1st thoracic nerve and suprascapular nerve and axillary nerve(LI-15), dosal rami of C4 and 1st thoracic nerve and suprascapular nerve(LI-16), transverse cervical nerve and supraclavicular nerve and phrenic nerve(LI-17), transverse cervical nerve and 2nd, 3rd cervical nerve and accessory nerve(LI-18), infraorbital nerve(LI-19), facial nerve and infraorbital nerve(LI-20). 3) Blood vessels; proper palmar digital artery(LI-1, LI-2), dorsal metacarpal artery and common palmar digital artery(LI-3), dorsal metacarpal artery and common palmar digital artery and branch of deep palmar aterial arch(LI-4), radial artery(LI-5), branch of posterior interosseous artery(LI-6, LI-7), radial recurrent artery(LI-11), cephalic vein and radial collateral artery(LI-13), cephalic vein and posterior circumflex humeral artery(LI-14), thoracoacromial artery and suprascapular artery and posterior circumflex humeral artery and anterior circumflex humeral artery(LI-15), transverse cervical artery and suprascapular artery(LI-16), transverse cervical artery(LI-17), SCM branch of external carotid artery(LI-18), facial artery(LI-19, LI-20)

  • PDF

구강악안면 영역의 말초신경 재생을 위한 비복신경의 외과적 해부학 (Surgical Anatomy of Sural Nerve for the Peripheral Nerve Regeneration in the Oral and Maxillofacial Field)

  • 서미현;박정민;김성민;강지영;명훈;이종호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제34권2호
    • /
    • pp.148-154
    • /
    • 2012
  • Peripheral nerve injuries in the oral and maxillofacial regions require nerve repairs for the recovery of sensory and/or motor functions. Primary indications for the peripheral nerve grafts are injuries or continuity defects due to trauma, pathologic conditions, ablation surgery, or other diseases, that cannot regain normal functions without surgical interventions, including microneurosurgery. For the autogenous nerve graft, sural nerve and greater auricular nerve are the most common donor nerves in the oral and maxillofacial regions. The sural nerve has been widely used for this purpose, due to the ease of harvest, available nerve graft up to 30 to 40 cm in length, high fascicular density, a width of 1.5 to 3.0 mm, which is similar to that of the trigeminal nerve, and minimal branching and donor sity morbidity. Many different surgical techniques have been designed for the sural nerve harvesting, such as a single longitudinal incision, multiple stair-step incisions, use of nerve extractor or tendon stripper, and endoscopic approach. For a better understanding of the sural nerve graft and in avoiding of uneventful complications during these procedures as an oral and maxillofacial surgeon, the related surgical anatomies with their harvesting tips are summarized in this review article.

Management and prevention of third molar surgery-related trigeminal nerve injury: time for a rethink

  • Leung, Yiu Yan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제45권5호
    • /
    • pp.233-240
    • /
    • 2019
  • Trigeminal nerve injury as a consequence of lower third molar surgery is a notorious complication and may affect the patient in long term. Inferior alveolar nerve (IAN) and lingual nerve (LN) injury result in different degree of neurosensory deficit and also other neurological symptoms. The long term effects may include persistent sensory loss, chronic pain and depression. It is crucial to understand the pathophysiology of the nerve injury from lower third molar surgery. Surgery remains the most promising treatment in moderate-to-severe nerve injuries. There are limitations in the current treatment methods and full recovery is not commonly achievable. It is better to prevent nerve injury than to treat with unpredictable results. Coronectomy has been proved to be effective in reducing IAN injury and carries minimal long-term morbidity. New technologies, like the roles of erythropoietin and stem cell therapy, are being investigated for neuroprotection and neural regeneration. Breakthroughs in basic and translational research are required to improve the clinical outcomes of the current treatment modalities of third molar surgery-related nerve injury.

An anomalous pseudoganglion associated with high division of sciatic nerve

  • Alka Vithalrao Bhingardeo;Ayush Amlan;Mrudula Chandrupatla;Shailaja Prabhala;Shrinivas Somalwar
    • Anatomy and Cell Biology
    • /
    • 제57권2호
    • /
    • pp.320-323
    • /
    • 2024
  • Sciatic nerve (SN) is the thickest and longest nerve of the body. Deviations from the normal anatomical origin and level of bifurcation of SN have been frequently reported. In the present case, we are presenting a unique scenario of origin of terminal branches of the SN-tibial nerve (TN) and common peroneal nerve (CPN) in the pelvic region itself from divisions arising directly from the lumbosacral plexus. This variation was associated with origin of posterior femoral cutaneous nerve from the superior division of CPN with anomalous communicating branches between pudendal nerve and TN. The unique characteristics of the present case are the presence of 'pseudoganglion' found on the inferior division of TN. The present case stands out as the first of its kind to mention such pseudoganglion. Knowledge of some unusual findings like presence of pseudoganglion and intercommunications between nerves have clinical implications in anesthesiology, neurology, sports medicine, and surgery.

백서 안와하신경에서 알콜 및 글리세롤 주입의 효과 (EFFECTS OF ALCOHOL AND GLYCEROL INJECTION ON THE RAT INFRAORBITAL NERVE)

  • 윤천주;유선열
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권2호
    • /
    • pp.150-156
    • /
    • 2001
  • This study was performed to investigate the changes of nerve after the injection of alcohol and glycerol at the infraorbital nerve in rats. Using the eighteen Sprague-Dawley rats, weighing $200{\sim}250g$, 99% alcohol, pure glycerol, and sterile saline was injected to the epineurium of the infraorbital nerve. Glycerol injected rats were devided into 0.01ml, 0.03ml and 0.05ml groups. The alcohol and control group were injected 0.03ml at the left infraorbital nerve. The following results were obtained by histopathological examination after 1 week, 1 month, and 3 months. A few inflammatory cell infiltration and no signs of nerve degeneration were noted in control group. Total nerve degeneration was noted in the alcohol group and no regeneration was noted in 1month, and partial regeneration was noted at 3month. The nerve degeneration was noted at the periphery of nerve bundle in 0.01ml glycerol injection group. Total degeneration was noted in the 0.03ml and 0.05ml glycerol injection group and the degree was propotional to dose. These results suggest that injection of alcohol and glycerol are effective to nerve blockage by nerve degeneration, and nerve degeneration by glycerol injection is propotional to dose and nerve regeneration by glycerol injection is inversely propotional to dose.

  • PDF

Preservation of Facial Nerve Function Repaired by Using Fibrin Glue-Coated Collagen Fleece for a Totally Transected Facial Nerve during Vestibular Schwannoma Surgery

  • Choi, Kyung-Sik;Kim, Min-Su;Jang, Sung-Ho;Kim, Oh-Lyong
    • Journal of Korean Neurosurgical Society
    • /
    • 제55권4호
    • /
    • pp.208-211
    • /
    • 2014
  • Recently, the increasing rates of facial nerve preservation after vestibular schwannoma (VS) surgery have been achieved. However, the management of a partially or completely damaged facial nerve remains an important issue. The authors report a patient who was had a good recovery after a facial nerve reconstruction using fibrin glue-coated collagen fleece for a totally transected facial nerve during VS surgery. And, we verifed the anatomical preservation and functional outcome of the facial nerve with postoperative diffusion tensor (DT) imaging facial nerve tractography, electroneurography (ENoG) and House-Brackmann (HB) grade. DT imaging tractography at the 3rd postoperative day revealed preservation of facial nerve. And facial nerve degeneration ratio was 94.1% at 7th postoperative day ENoG. At postoperative 3 months and 1 year follow-up examination with DT imaging facial nerve tractography and ENoG, good results for facial nerve function were observed.