• Title/Summary/Keyword: Neogene

Search Result 19, Processing Time 0.028 seconds

Bathymetry and Morphotectonic Elements in the Ulleung Basin, East Sea of Korea

  • Suk, Bong-Chool;Anosov, G.I.;Semakin, V.P.;Svarichevsky, A.S.
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • A detailed bathymetric map is used to construct a morphotectonic map of the Ulleung Basin. The definition of "morphotectonics" and the procedure of the morphotectonic mapping are described in detail. The morphotectonic structural elements of various orders and ranks are also determined using echo-sounding and other geophysical data. Preliminary analysis shows that the newly determined morpho-structural elements coincide with the locations of deeper tectonic features established by the geophysical evidences of the inner sedimentary and/or crustal sections. Therefore, the tectonic zone of the Ulleung Basin has imprinted the patterns of the inherited evolution since Neogene.e Neogene.

  • PDF

Neogene Uplift in the Korean Peninsula Linked to Small-scaled Mantle Convection at Singking Slab Edge (소규모 맨틀 대류에 의한 한반도의 신제3기 이후 융기 운동)

  • Shin, Jae-Ryul;Sandiford, Mike
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.3
    • /
    • pp.328-346
    • /
    • 2012
  • This study provides quantitative constraints on Neogene uplift in the Korean peninsula using onshore paleo-shoreline records and seismic data. The eastern margin of Northeast Asia including Korea sits in the back-arc system behind the Western Pacific Subduction Zone, a complex trench triple junction of the Philippine Sea, Pacific, and Eurasian (Amurian) plates. An analysis of seismic data in the subduction zone shows that the pattern of uplift in the peninsula mirrors the extent of deep seismicity in subducting Pacific plate beneath. Combined with previous tomographic studies it is proposed that uplift is partly driven by asthenospheric upwelling caused by a sinking slab during the Neogene. In addition, the SHmax orientations of E-W and N-S trends in the peninsula are consistent with the prevailing in-situ stress fields in the eastern Eurasian continent generated by various plate boundary forces. The uplift in Korea during the Late Neogene is attributed, in part, to lithospheric failure relating to faulting movements, thus providing a link between dynamic effects of mantle upwelling at sinking slab edge and lithospheric responses driven by plate boundary forces.

  • PDF

포항분지에 대한 석유지질학적 연구

  • 김기현;김재호;김상석;박동배;이용일
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.48-55
    • /
    • 1998
  • The Pohang Basin is located in Pohang City and adjacent coastal areas in the southeastern Korea. It has a sequence of 900 meters of Neogene marine sediments (Yeonil Group) while offshore basins in the East Sea, e.g., the Ulleng basin, is over 10 Km in thickness. An understanding of the marine Yeonil Group in the Pohang Basin may provide insights into the hydrocarbon potential of the offshore East Sea regions. Heulandite, smectite, dolomite, kaolinite and opal-CT are commonly found as diagenetic minerals in the Yeonil Group. Among these minerals, heulandite occurs as a main cement only in sandstones consisting of volcanic matrix, Smectite composition and diagenetic mineral facies such as heulandite and opal-CT may reflect that the Yeonil Group has undergone shallow burial, temperatures below about 60 degrees. This suggest that sandstones have experiened weak diagenetic alteration. In order to reconstruct the thermal history of the basin, apatite fission-track analysis was carried out. Aapparent apatite fission-track ages (AFTAs) exhibit a broader range of ages from 238 Ma to 27 Ma with mean track lengths in the range of $15.24\pm8.0$ micrometers, indicating that these samples had undergone significant predepositional thermal alteration. The Triassic to Cretaceous AFTAs seem In represent the timing of cooling of their sedimentary sources. Late Cretaceous mean AFTA $(79.0\pm8.0 Ma)$ on the Neogene Yeonil Group indicates that the Yeonil Group had not been buried deeper than 2km since its deposition. The organic matters of. the Pohang Basin remain in the immature stage of thermal evolution because burial depth and temperature were not sufficient enough for maturation even in the deep section of the basin.

  • PDF

Diversity of Fossil Woods from the Korean Peninsula (한반도에서 산출된 화석목재의 다양성)

  • Kim, Jong-Heon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • In order to understand the broad outline and palaeobotanical significances, the fossil woods from the Korean Peninsula were integrated through the literature surveys. Types and diversity of them are gradually increasing from Mesozoic to Cenozoic, especially increased sharply in Cenozoic. During the Early Mesozoic, six conifer taxa belonging to four genera were described, which corresponds to about 6% of the Daedong flora. Those of the Late Mesozoic are all conifers, consisting of fifteen taxa belonging to seven genera, which corresponds to about 29% of the Nakdong flora. During the Neogene, thirty four taxa belong to sixteen families were described. Those woods mostly consist of dicotyledon and have the greatest diversity compared to other geologic eras, which corresponds to about 83% of the Janggi flora. It is inferred that such a rapid increase of the silicified wood fossils in Neogene are due to the abundant presence of dicotyledon in floral composition and of pyroclastic rocks in strata, which are appropriate for preserving wood as fossils.

Late Neogene and Quaternary Vertical Motions in the Otway Coast, Southeast Australia (I): Development and Geochronology of Quaternary Marine Terraces (호주 남동부 Otway 해안의 후기 신제3기 및 제4기 융기 운동(I): 제4기 해안단구 발달 및 지층서)

  • Shin, Jaeryul
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.519-533
    • /
    • 2012
  • This study investigates a neotectonic context of the past 5 Ma for the Otway Ranges along the southern Victoria coast, SE Australia by evaluating the distribution and development of marine terraces along the mountainous coastal area. Uplift rate derived from low terrace deposits using OSL dating method is determined to evaluate the extent to which mild intraplate tectonism has the capability to influence the geomorphic evolution of continental interiors. This study also investigates the stratigraphic relationship between Quaternary marine terraces and Pliocene strandlines, which suggests a change of tectonic activity in the Late Neogene. The intensified tectonic response is well addressed in terms of an increase of the Australian intraplate stress level due to the change of relative motion and increased forces in the boundary between the Australian and Pacific plate.

Various vertical motions and mechanisms in intraplate settings (판 내부 융기 운동의 다양한 스케일과 매커니즘)

  • SHIN, Jaeryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2012
  • The Earth's surface deforms vertically in response to a variety of sources relating to lithospheric and sub-lithospheric processes, and distinguishing the continental mechanisms for vertical motions of the lithosphere remains a fundamental challenge in geosciences. A key prerequisite to the challenge is documentation of the temporal and spatial pattern of vertical motions in different tectonic settings. This study is aimed at elucidating the geodynamic factors that can contribute to vertical motions of the Earth's surface in intraplate continental settings including the Neogene uplift in the Korean peninsula based on numerous recent achievements in relevant fields. Ultimately, deciphering the interplay between the Earth's surface and the Earth's interior processes leads us to the notion of "the importance of geomorphic landscape" as a prism to view the dynamics of the Earth's inside.

Fossil Albizia Legume (Mimosaceae) from the Miocene Duho Formation of the Yeonil Group in the Pohang Area, Korea

  • Kim Jong-Heon
    • Journal of the Korean earth science society
    • /
    • v.26 no.2
    • /
    • pp.166-171
    • /
    • 2005
  • Fossil legumes of Albizia miokalkora Hu et Chaney (Mimosoideae) were found in the Miocene Duho Formation of the Yeonil Group distributed along the coast of Yeonil Bay in the Pohang area. The legume is flat and long and has 5-7 rounded seeds. The legumes of Albizia miokalkora are rare in the Cenozoic floras of the world and only known to Middle Miocene of East Asia. The fossil Albizia may use one of the important taxa to construct the biogeographic history of East Asia. This discovery is the first record of Albizia from the Neogene strata of Korea.

Paleoenvironments and Volcanism of the Ulleung Basin : Sedimentary Environment (울릉분지의 고환경과 화산활동 특성에 관한 연구 : 퇴적환경)

  • PARK Maeng-Eon;LEE Gwang-Hoon;SONG Yong-Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.481-496
    • /
    • 1996
  • The last Sea is a typical bark-arc basin consisting of basins, plateaus, ridges, and seamounts. The Ulleng Basin, located in the southwestern corner of the last Sea, contains thick Neogene sedimentary sequence. Analysis of over 2,500 km of single-channel seismic reflection data suggests that hemipelagic sedimentation prevailed over much of the basin during the late Miocene and pelagic sedimentation became more dominant during the Pliocene. During the Pleistocene terrigeneous sediments transported by turbidity currents and other gravity flows, together with continuous hemipelagic settling, resulted in well-stratified sedimentary layers. Influx of terrigenous sediments during the Pleistocene formed depocenters in the western and southern parts of the basins. In the Ulleung Interplain Gap, where the Ulleung Basin joins the deeper Japan Basin, sediment waves suggesting bottom current activities are seen.

  • PDF

A Critical Review on Setting up the Concept, Timing and Mechanism of Tertiary Tilted Flexural Mode of the Korean Peninsula: A new hypothesis derived from plate tectonics ('신생대 제3기 경동성 요곡운동'의 개념, 시기, 기작에 관한 비판적 고찰: 판구조운동 기원의 새로운 가설)

  • Shin, Jaeryul;Hwang, Sangill
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.200-220
    • /
    • 2014
  • This study reexamines the old concept and reviews prevalent statements on Cenozoic vertical motions of the peninsula that have been uncritically repeated in our academia. The contents of this paper are redefinition of the notion, tilted flexure or warping, and a suggestion for a new time set and properties of the deformation, followed by a new model on its influencing factors and processes. In conclusion, the Cenozoic vertical motion of the Korean peninsula can be reified further with an epeirogenic movement of uplift in the east side-subsidence in the west side of the peninsula since the Neogene (23 Ma). However, the regional boundary for areas of uplift and subsidence is not likely in the Korean peninsula but broader farther to East China and the southern part of Russia. It can be best understood that mantle convection produced by subducting activities in the Western Pacific Subduction Zone causes the uplift and subsidence of earth surface around NE Asia. In addition, faultings in the upper lithosphere induced by in-situ plate boundary stresses accelerate regional uplift in the peninsula since the Quaternary. Controversies that are still standing such as current uplift movements along the western coast of the peninsula during the late Quaternary could be precisely discussed with future research providing detailed information on it.

  • PDF

Evolution of Neogene Sedimentary Basins in the Eastern Continental Margin of Korea (한반도 동해 대륙주변부 신제삼기 퇴적분지의 진화)

  • Yoon Suk Hoon;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.15-27
    • /
    • 1993
  • Seismic reflection profiles from the eastern continental margin of Korea delineate three major Neogene sedimentary basins perched on the shelf and slope regions: Pohang-Youngduk, Mukho and Hupo basins. The stratigraphic and structural analyses demonstrate that the formation and filling of these basins were intimately controlled by two phases of regional tectonism: transtensional and subsequent contractional deformations. In the Oligocene to Early Miocene, back-arc opening of the East Sea induced extensional shear deformation with dextral strike-slip movement along right-stepping Hupo and Yangsan faults. During the transtensional deformation, the Pohang-Youngduk Basin was formed by pull-apart opening between two strike-slip faults; in the northern part, block faulting caused to form the Mukho Basin between basement highs. As a result of the back-arc closure, the stress field was inverted into compression at the end of the Middle Miocene. Under the compressive regime, two episodes (Late Miocene and Early Pliocene) of regional deformation led to the destruction and partial uplift of the basin-filling sequences. In particular, during the second episode of compressive deformation, the Hupo fault was reactivated with an oblique-slip sense, which resulted in an opening of the Hupo Basin as a half-graben on the downthrown fault block.

  • PDF