• Title/Summary/Keyword: Neighborhood search

Search Result 113, Processing Time 0.031 seconds

An Energy Optimization Algorithm for Maritime Search and Rescue in Wireless Sensor Networks (무선 센서 네트워크에서 해양 수색 및 구조를 위한 에너지 최적화 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.676-682
    • /
    • 2018
  • In wireless sensor networks, we propose an optimization algorithm in order to minimize the consumed energy of nodes for maritime search and rescue. In the marine environment, search and rescue operations are mainly performed on the surveillance side and passively on the rescued side. A self-configurable wireless sensor network can build a system that can send rescue signals in the operations. A simulated annealing algorithm is proposed to minimize the consumed energy of nodes in the networks with many nodes. As the density of nodes becomes higher, the algorithmic computation will increase highly. To search the good result in a proper execution time, the proposed algorithm proposes a new neighborhood generating operation and improves the efficiency of the algorithm. The proposed algorithm was evaluated in terms of the consumed energy of the nodes and algorithm execution time, and the proposed algorithm performed better than other optimization algorithms in the performance results.

A study on the Encoding Method for High Performance Moving Picture Encoder (고속 동영상 부호기를 위한 부호화 방법에 관한 연구)

  • 김용욱;허도근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.352-358
    • /
    • 2004
  • This paper is studied the improvement of performance for moving picture encoder using H.263. This is used the new motion vector search algorithm using a relation with neighborhood search point and is applied the integer DCT for the encoder. The integer DCT behaves DCT by the addition operation of the integer using WHT and a integer lifting than conventional DCT that needs the multiplication operation of a floating point number. Therefore, the integer Dn can reduce the operation amount than basis DCT with having an equal PSNR. The new motion vector search algorithm is showed almost similar PSNR as reducing the operation amount than the conventional motion vector search algorithm. To experiment a compatibility of the integer DCT and the conventional DCT, according to result compare case that uses a method only and case that uses the alternate two methods of the integer DCT or the conventional DCT to H.263 encoder and decoder, case that uses the alternate two methods is showed doing not deteriorate PSNR-and being each other compatible visually than case that uses an equal method only.

Redundancy Allocation in A Multi-Level Series System by Cuckoo Search (뻐꾸기 탐색 방법을 활용한 다계층 시스템의 중복 할당 최적화)

  • Chung, Il-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.334-340
    • /
    • 2017
  • Reliability is considered a particularly important design factor for systems that have critical results once a failure occurs in a system, such as trains, airplanes, and passenger ships. The reliability of the system can be improved in several ways, but in a system that requires considerable reliability, the redundancy of parts is efficient in improving the system reliability. In the case of duplicating parts to improve reliability, the kind of parts and the number of duplicating parts should be determined under the system reliability, part costs, and resources. This study examined the redundancy allocation of multi-level systems with serial structures. This paper describes the definition of a multi-system and how to optimize the kind of parts and number of duplications to maximize the system reliability. To optimize the redundancy, the cuckoo search algorithm was applied. The search procedure, the solution representation and the development of the neighborhood solution were proposed to optimize the redundancy allocation of a multi-level system. The results of numerical experiments were compared with the genetic algorithm and cuckoo search algorithm.

Parameter search methodology of support vector machines for improving performance (속도 향상을 위한 서포트 벡터 머신의 파라미터 탐색 방법론)

  • Lee, Sung-Bo;Kim, Jae-young;Kim, Cheol-Hong;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.329-337
    • /
    • 2017
  • This paper proposes a search method that explores parameters C and σ values of support vector machines (SVM) to improve performance while maintaining search accuracy. A traditional grid search method requires tremendous computational times because it searches all available combinations of C and σ values to find optimal combinations which provide the best performance of SVM. To address this issue, this paper proposes a deep search method that reduces computational time. In the first stage, it divides C-σ- accurate metrics into four regions, searches a median value of each region, and then selects a point of the highest accurate value as a start point. In the second stage, the selected start points are re-divided into four regions, and then the highest accurate point is assigned as a new search point. In the third stage, after eight points near the search point. are explored and the highest accurate value is assigned as a new search point, corresponding points are divided into four parts and it calculates an accurate value. In the last stage, it is continued until an accurate metric value is the highest compared to the neighborhood point values. If it is not satisfied, it is repeated from the second stage with the input level value. Experimental results using normal and defect bearings show that the proposed deep search algorithm outperforms the conventional algorithms in terms of performance and search time.

A Tabu Search Algorithm for Controller Placement Problem in Software Defined Networks (소프트웨어 정의 네트워크에서 제어기 배치 문제를 위한 타부 서치 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.491-498
    • /
    • 2016
  • The software defined networks implement a software network control plane, which is physically separated from the data plane. For wide area software defined network deployments, multiple controllers are required, and the placement of these controllers influences importantly the performance of the software defined networks. This paper proposes a Tabu search algorithm, which is one of the meta heuristic algorithms, for an efficient controller placement in software defined networks. In order to efficiently obtain better results, we propose new neighborhood generating operations, which are called the neighbor position move and the neighbor number move, of the Tabu search algorithm. We evaluate the performances of the proposed algorithm through some experiments in terms of the minimum latency and the execution time of the proposed algorithm. The comparison results show that the proposed algorithm outperforms the existing genetic algorithm and random method under various conditions.

A Tabu Search Algorithm for Node Reprogramming in Wireless Sensor Networks (무선 센서 네트워크에서 노드 재프로그래밍을 위한 타부 서치 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.596-603
    • /
    • 2019
  • A reprogramming operation is necessary to update the software code of the node to change or update the functionality of the deployed node in wireless sensor networks. This paper proposes an optimization algorithm that minimizes the transmission energy of a node for the purpose of reprogramming a node in wireless sensor networks. We also design an algorithm that keeps energy consumption of all nodes balanced in order to maintain the lifetime of the network. In this paper, we propose a Tabu search algorithm with a new neighborhood generation method for minimizing transmission energy and energy consumption in wireless sensor networks with many nodes. The proposed algorithm is designed to obtain optimal results within a reasonable execution time. The performance of the proposed Tabu search algorithm was evaluated in terms of the node's transmission energy, remaining energy, and algorithm execution time. The performance evaluation results showed better performance than the previous methods.

Local Solution of a Sequential Algorithm Using Orthogonal Arrays in a Discrete Design Space (이산설계공간에서 직교배열표를 이용한 순차적 알고리듬의 국부해)

  • Yi, Jeong-Wook;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1399-1407
    • /
    • 2004
  • Structural optimization has been carried out in continuous design space or in discrete design space. Generally, available designs are discrete in design practice. However, the methods for discrete variables are extremely expensive in computational cost. An iterative optimization algorithm is proposed for design in a discrete space, which is called a sequential algorithm using orthogonal arrays (SOA). We demonstrate verifying the fact that a local optimum solution can be obtained from the process with this algorithm. The local optimum solution is defined in a discrete design space. Then the search space, which is a set of candidate values of each design variables formed by the neighborhood of a current design point, is defined. It is verified that a local optimum solution can be found by sequentially moving the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained by using the SOA algorithm

타부탐색, 메모리, 싸이클 탐지를 이용한 배낭문제 풀기

  • 고일상
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.514-517
    • /
    • 1996
  • In solving multi-level knapsack problems, conventional heuristic approaches often assume a short-sighted plan within a static decision enviornment to find a near optimal solution. These conventional approaches are inflexible, and lack the ability to adapt to different problem structures. This research approaches the problem from a totally different viewpoint, and a new method is designed and implemented. This method performs intelligent actions based on memories of historic data and learning. These actions are developed not only by observing the attributes of the optimal solution, the solution space, and its corresponding path to the optimal solution, but also by applying human intelligence, experience, and intuition with respect to the search strategies. The method intensifies, or diversifies the search process appropriately in time and space. In order to create a good neighborhood structure, this method uses two powerful choice rules that emphasize the impact of candidate variables on the current solution with respect to their profit contribution. A side effect of so-called "pseudo moves", similar to "aspirations", supports these choice rules during the evaluation process. For the purpose of visiting as many relevant points as possible, strategic oscillation between feasible and infeasible solutions around the boundary is applied for intensification. To avoid redundant moves, short-term (tabu-lists), intermediate-term (cycle detection), and long-term (recording frequency and significant solutions for diversification) memories are used. Test results show that among the 45 generated problems (these problems pose significant or insurmountable challenges to exact methods) the approach produces the optimal solutions in 39 cases.lutions in 39 cases.

  • PDF

Local Solution of Sequential Algorithm Using Orthogonal Arrays in Discrete Design Space (이산설계공간에서 직교배열표를 이용한 순차적 알고리듬의 국부해)

  • Yi, Jeong-Wook;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1005-1010
    • /
    • 2004
  • The structural optimization has been carried out in the continuous design space or in the discrete design space. Generally, available designs are discrete in design practice. But methods for discrete variables are extremely expensive in computational cost. In order to overcome this weakness, an iterative optimization algorithm was proposed for design in the discrete space, which is called as a sequential algorithm using orthogonal arrays (SOA). We focus to verify the fact that the local solution can be obtained throughout the optimization with this algorithm. The local solution is defined in discrete design space. Then the search space, which is the set of candidate values of each design variables formed by the neighborhood of current design point, is defined. It is verified that a local solution can be founded by moving sequentially the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained using the SOA algorithm

  • PDF

Reactive Tabu Search using Neighborhood Strategy Switching Mechanism (이웃 해 전략 전환 메커니즘을 이용한 반응적 타부 탐색)

  • Kim, Jae-Ho;Lee, Hui-Sang;Han, Hyeon-Gu
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.7
    • /
    • pp.467-477
    • /
    • 2001
  • 반응적 타부 탐색은 단순한 타부 탐색과 비교해서 중장기 메모리를 이용한 학습을 통하여 타부리스트의 크기를 반응적으로 변화시킴으로써 NP-hard 문제에 속하는 다양한 조합 최적해 문제에 대해서 좋은 해를 효율적으로 찾는다. 본 논문에서는 반응적 타부 탐색에 있어서 중장기 메모리를 이용한 탈출 메커니즘으로 이웃 해 전략 전환 메커니즘이라는 개념을 제시한다. 제시된 이웃 해 전략 전환 메커니즘을 이용한 반응적 타부 탐색을 특정 공과 대학의 강의 시간표 작성 문제와 외판원문제 (traveling salesman problem)에 적용하여 기존의 반응적 타부 탐색과 비교 분석을 하였다. 전산 실험 결과 제시된 알고리즘은 기존의 반응적 타부 탐색 알고리즘에 비교하여 더 좋은 해를 더 짧은 시간에 찾아주었다.

  • PDF