• 제목/요약/키워드: Neighborhood method

Search Result 509, Processing Time 0.029 seconds

Study of Effects of Measurement Errors in Damage Detection (동적 측정오차가 손상탐지에 미치는 영향에 관한 연구)

  • Kim, Ki-Ook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.218-224
    • /
    • 2011
  • A modal method is presented for the investigation of the effects of measurement errors in damage detection for dynamic structural systems. The structural modifications to the baseline system result in the response changes of the perturbed structure, which are measured to determine a unique system in the inverse problem of damage detection. If the numerical modal data are exact, mathematical programming techniques can be applied to obtain the accurate structural changes. In practice, however, the associated measurement errors are unavoidable, to some extent, and cause significant deviations from the correct perturbed system because of the intrinsic instability of eigenvalue problem. Hence, a self-equilibrating inverse system is allowed to drift in the close neighborhood of the measured data. A numerical example shows that iterative procedures can be used to search for the damaged structural elements. A small set of selected degrees of freedom is employed for practical applicability and computational efficiency.

Railway Object Recognition Using Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터로부터 철도 시설물 인식에 관한 연구)

  • Luo, Chao;Jwa, Yoon Seok;Sohn, Gun Ho;Won, Jong Un;Lee, Suk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • The objective of the research is to automatically recognize railway objects from MLS data in which 9 key objects including terrain, track, bed, vegetation, platform, barrier, posts, attachments, powerlines are targeted. The proposed method can be divided into two main sub-steps. First, multi-scale contextual features are extracted to take the advantage of characterizing objects of interest from different geometric levels such as point, line, volumetric and vertical profile. Second, by considering contextual interactions amongst object labels, a contextual classifier is utilized to make a prediction with local coherence. In here, the Conditional Random Field (CRF) is used to incorporate the object context. By maximizing the object label agreement in the local neighborhood, CRF model could compensate the local inconsistency prediction resulting from other local classifiers. The performance of proposed method was evaluated based on the analysis of commission and omission error and shows promising results for the practical use.

User and Item based Collaborative Filtering Using Classification Property Naive Bayesian (분류 속성과 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링)

  • Kim, Jong-Hun;Kim, Yong-Jip;Rim, Kee-Wook;Lee, Jung-Hyun;Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.23-33
    • /
    • 2007
  • The collaborative filtering has used the nearest neighborhood method based on the preference and the similarity using the Pearson correlation coefficient. Therefore, it does not reflect content of the items and has the problems of the sparsity and scalability as well. the item-based collaborative filtering has been practically used to improve these defects, but it still does not reflect attributes of the item. In this paper, we propose the user and item based collaborative filtering using the classification property and Naive Bayesian to supplement the defects in the existing recommendation system. The proposed method complexity refers to the item similarity based on explicit data and the user similarity based on implicit data for handing the sparse problem. It applies to the Naive Bayesian to the result of reference. Also, it can enhance the accuracy as computation of the item similarity reflects on the correlative rank among the classification property to reflect attributes.

Elite Ant System for Solving Multicast Routing Problem (멀티캐스트 라우팅 문제 해결을 위한 엘리트 개미 시스템)

  • Lee, Seung-Gwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.147-152
    • /
    • 2008
  • Ant System(AS) is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, AS is applied to the Multicast Routing Problem. Multicast Routing is modeled as the NP-complete Steiner tree problem. This is the shortest path from source node to all destination nodes. We proposed new AS to resolve this problem. The proposed method selects the neighborhood node to consider all costs of the edge and the next node in state transition rule. Also, The edges which are selected elite agents are updated to additional pheromone. Simulation results of our proposed method show fast convergence and give lower total cost than original AS and $AS_{elite}$.

  • PDF

Learning of Rules for Edge Detection of Image using Fuzzy Classifier System (퍼지 분류가 시스템을 이용한 영상의 에지 검출 규칙 학습)

  • 정치선;반창봉;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.252-259
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection of a image. The FCS is based on the fuzzy logic system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. There are two different approaches, Michigan and Pittsburgh approaches, to acquire appropriate fuzzy rules by evolutionary computation. In this paper, we use the Michigan style in which a single fuzzy if-then rule is coded as an individual. Also the FCS employs the Genetic Algorithms to generate new rules and modify rules when performance of the system needs to be improved. The proposed method is evaluated by applying it to the edge detection of a gray-level image that is a pre-processing step of the computer vision. the differences of average gray-level of the each vertical/horizontal arrays of neighborhood pixels are represented into fuzzy sets, and then the center pixel is decided whether it is edge pixel or not using fuzzy if-then rules. We compare the resulting image with a conventional edge image obtained by the other edge detection method such as Sobel edge detection.

  • PDF

A Study on the Trade Area Analysis Model based on GIS - A Case of Huff probability model - (GIS 기반의 상권분석 모형 연구 - Huff 확률모형을 중심으로 -)

  • Son, Young-Gi;An, Sang-Hyun;Shin, Young-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.164-171
    • /
    • 2007
  • This research used GIS spatial analysis model and Huff probability model and achieved trade area analysis of area center. we constructed basic maps that were surveyed according to types of business, number of households etc. using a land registration map of LMIS(Land Management Information System) in Bokdae-dong, Cheongju-si. Kernel density function and NNI(Nearest Neighbor Index) was used to estimate store distribution center area in neighborhood life zones. The center point of area and scale were estimated by means of the center area. Huff probability model was used in abstracting trade areas according to estimated center areas, those was drew map. Therefore, this study describes method that can apply in Huff probability model through kernel density function and NNI of GIS spatial analysis techniques. A trade area was abstracted more exactly by taking advantage of this method, which will can aid merchant for the foundation of small sized enterprises.

  • PDF

Phenomenological Study of the Lived Experience of Elderly People (현상학적 접근을 통한 노인의 삶의 경험)

  • Huang, Bo-Sun;Shin, Yu-Sun;Yun, Suk-Ok;Lee, Ji-Hyun;Jung, Kyung-Yim;Kim, Jung-Soon;Kim, Lee-Soon;Kim, Bok-Yong;Kang, Young-Mee
    • Research in Community and Public Health Nursing
    • /
    • v.6 no.2
    • /
    • pp.133-160
    • /
    • 1995
  • The purpose of this study was to understand the structure of the lived experience by poor elderly people. The research question was 'What is the structure of the lived experience of life of a poor elderly people.' The sample consisted of 21 single poor elderly persons in Pusan. The unstructured interviews were audio-recorded and analyzed using the Van Kaam method. This study was 368 responses which yielded of descriptive expressions and priority classifications. The result generated 74 common elements, 18 syntheses of hypothetical definitions and 5 identifications of the structural definition. The structural definitions and hypothetical definitions were as follows; 1. physical discomfort ; complaints of severe pain ; dysfunction of physical organs 2. emotional cognition ; despair ; resignation ; attitude toward death 3. support system ; interaction with family ; thinking about God ; economical difficulties ; expectancy of social services ; opinions about health service ; leisure ; interaction with neighborhood ; dissatisfaction due to inadequate environment 4. past reminiscence ; negative reminiscence of one's past ; past regret ; positive reminiscence of one's past 5. desire ; desire of unrealization life ; self satisfaction The significance of this study for nursing are; Comprehension of the lived experience of client and identification' of nursing approach method concerning the lifestyle of client.

  • PDF

Imputation Method using the Space-Time Model in Sample Survey (공간-시계열 모형을 이용한 결측대체 방법에 대한 연구)

  • Lee, Jin-Hee;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.499-514
    • /
    • 2007
  • It is a common practice to use the auxiliary variables to impute missing values from item nonresponse in surveys. Sometimes there are few auxiliary variables for missing value imputation, but if spatial and time autocorrelations exist, we should use these correlations for better results. Recently, Lee et al. (2006) showed that spatial autocorrelation could be efficiently used for missing value imputation when spatial autocorrelation existed, using the data from the farm household economy data in Gangwon-do, 2002. In this paper, we present au evaluation of spatial and space-time nonresponse imputation methods when there exist spatial and time autocorrelations using the monthly data during 2000-2002 from the same data previously used by Lee et al. (2006). We show that space-time imputation method is more efficient than the other through the numerical simulations.

A Method for Minimizing the Number of Clusters in Ad-Hoc Networks (Ad-Hoc 네트워크에서 클러스터 수를 최소화하기 위한 방안)

  • Bang Sang-Won
    • Journal of Internet Computing and Services
    • /
    • v.5 no.6
    • /
    • pp.21-30
    • /
    • 2004
  • In Ad-Hoc network, the cluster structure enables effective use of multiple channels, reduces the number of control messages, and increase the scalability of network, Also, it is employed for reducing the number of broadcast messages in an Ad-Hoc network. With the consideration of these advantages, it is desirable that a cluster structure keeps a few clusters in the network, Generally, the cluster formation scheme based on connectivity yields fewer clusters than the other schemes. However, the connectivity based scheme may yield even more clusters than the other schemes according to the network topology. In this paper, a cluster formation scheme dividing the cluster formation into two phases is proposed. In the first phase, the lowest connectivity host in neighborhood initiates the cluster formation. Then, an adjustment procedure for affiliating a lot of the lowest connectivity hosts is employed. In the second phase, the hosts which were not affiliated to the first phase clusters are grouped into one or more clusters through criterions of connectivity and host ID. As a result, the proposed scheme yields a fewer clusters compared with existing other schemes in fully distributed method. The simulation results proves that our scheme is better than LIDCP(3) and HCCP(3).

  • PDF

Optimization Algorithm for Minimizing Network Energy Consumption with Traffic Redundancy Elimination (트래픽 중복 제거로 네트워크 에너지 소비를 최소화하기 위한 최적화 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.930-939
    • /
    • 2021
  • In recent years, the use of broadband bandwidth and redundant links for stable transmission in networks has resulted in excessive energy consumption and reduced transmission efficiency. In this paper, we propose an optimization algorithm that reduces the number of transmission links and minimizes transmission energy by removing redundant traffic in networks where traffic redundancy is allowed. The optimization algorithm proposed in this paper uses the meta-heuristic method using Tabu search algorithm. The proposed optimization algorithm minimizes transmission energy by designing a neighborhood generation method that efficiently routes overlapping traffic. The performance evaluation of the proposed optimization algorithm was performed in terms of the number of links used to transmit all traffic generated in the network and the transmission energy consumed. From the performance evaluation results, it was confirmed that the proposed algorithm is superior to other algorithms previously proposed.