• 제목/요약/키워드: Neighbor-Joining

검색결과 201건 처리시간 0.019초

Subtype Distribution of Blastocystis in Communities along the Chao Phraya River, Thailand

  • Palasuwan, Attakorn;Palasuwan, Duangdao;Mahittikorn, Aongart;Chiabchalard, Rachatawan;Combes, Valery;Popruk, Supaluk
    • Parasites, Hosts and Diseases
    • /
    • 제54권4호
    • /
    • pp.455-460
    • /
    • 2016
  • Blastocystis is a common zoonotic enteric protozoan that has been classified into 17 distinct subtypes (STs). A cross-sectional study was conducted to determine the prevalence and subtype distributions of Blastocystis in villagers living along the Chao Phraya River, Ayutthaya Province, Thailand, and to assess the risk of zoonotic infection. In total, 220 stool samples were collected, and DNA was extracted. PCR and sequencing were performed with primers targeting the small-subunit ribosomal RNA (SSU rRNA) genes. Blastocystis was present in 5.9% (13/220) of samples, and ST3 (5.0%; 11/220) was the predominant subtype, followed by ST2 (0.45%; 1/220) and ST6 (0.45%; 1/220). Phylogenetic trees were constructed with the maximum-likelihood method based on the Hasegawa-Kishino-Yano + G + I model, neighbor-joining, and maximum parsimony methods. The percentage of bootstrapped trees in which the associated taxa clustered together was relatively high. All the sequences of the Blastocystis-positive samples (KU051524-KU051536) were closely related to those from animals (pig, cattle, and chicken), indicating a zoonotic risk. Therefore, the villagers require proper health education, especially regarding the prevention of parasitic infection, to improve their personal hygiene and community health. Further studies are required to investigate the Blastocystis STs in the animals living in these villages.

Molecular Detection of Spirometra decipiens in the United States

  • Jeon, Hyeong-Kyu;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Sohn, Woon-Mok;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • 제54권4호
    • /
    • pp.503-507
    • /
    • 2016
  • The genus Spirometra belongs to the family Diphyllobothriidae and order Pseudophyllidea, and includes intestinal parasites of cats and dogs. In this study, a plerocercoid labeled as Spirometra mansonoides from the USA was examined for species identification and phylogenetic analysis using 2 complete mitochondrial genes, cytochrome c oxidase I (cox1) and NADH dehydrogenase subunit 3 (nad3). The cox1 sequences (1,566 bp) of the plerocercoid specimen (USA) showed 99.2% similarity to the reference sequences of the plerocercoid of Korean Spirometra decipiens (GenBank no. KJ599679), and 99.1% similarity in regard to nad3 (346 bp). Phylogenetic tree topologies generated using 4 analytical methods were identical and showed high confidence levels with bootstrap values of 1.00, 100%, 100%, and 100% for Bayesian inference (BI), maximum-likelihood (ML), neighbor-joining (NJ), and maximum parsimony (MP) methods, respectively. Representatives of Diphyllobothrium and Spirometra species formed a monophyletic group, and the sister-genera status between these species was well supported. Trapezoic proglottids in the posterior 1/5 region of an adult worm obtained from an experimentally infected cat were morphologically examined. The outer uterine loop of the uterus coiling characteristically consisted of 2 complete turns. The results clearly indicated that the examined Spirometra specimen from the USA matched to S. decipiens very well, and indicated possible presence of the life cycle of this species in this region.

Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand

  • Butboonchoo, Preeyaporn;Wongsawad, Chalobol;Rojanapaibul, Amnat;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • 제54권6호
    • /
    • pp.777-786
    • /
    • 2016
  • Raillietina species are prevalent in domestic chickens (Gallus gallus domesticus) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand.

The Genetic Variability and Relationships of Japanese and Foreign Chickens Assessed by Microsatellite DNA Profiling

  • Osman, S.A.M.;Sekino, M.;Nishihata, A.;Kobayashi, Y.;Takenaka, W.;Kinoshita, K.;Kuwayama, T.;Nishibori, M.;Yamamoto, Y.;Tsudzuki, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권10호
    • /
    • pp.1369-1378
    • /
    • 2006
  • This is the first study in which genetic variability and relationships of a large number of Japanese chicken breeds were revealed along with those of several foreign breeds by using microsatellite DNA polymorphisms. Twenty-eight breeds (34 populations) of native Japanese chickens and seven foreign breeds or varieties were analyzed. The mean number of alleles per locus, the proportion of the polymorphic loci, and the expected average heterozygosity ranged from 1.75 to 4.70, from 0.55 to 1.00, and from 0.21 to 0.67, respectively. Microsatellite alleles being unique to a particular population were detected in some populations. The $D_A$ genetic distance between populations was obtained from allele frequency for every pair of the populations to construct a neighbor-joining tree. According to the phylogenetic tree, excluding a few exceptions, native Japanese chicken breeds and foreign breeds were clearly separated from each other. Furthermore, the tree topology divided native Japanese chickens into four main classes, which was almost in accordance with the classification based on body morphology; that is, (1) Cochin type, (2) Malay type, (3) layer type, and (4) intermediate type between Malay and layer types. This is the first finding for native Japanese chickens.

Molecular Systematics of Korean Cobitids Based on Mitochondrial Cytochrome b Sequence

  • Kim, So-Young;Kim, Chang-Bae;Kim, Ik-Soo;Park, Jong-Young;Park, Ho-Yong
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.45-51
    • /
    • 2002
  • We compared the complete mitochondrial cytochrome b gene sequences of Korean and European cobitids to provide independent evidence for assessment of systematic and biogeographic relationships of species in the genus Cobitis. The data suggested monophyly of the genus Cobitis and the inclusion of Korean Cobitis species within the group having one lamina circularis, a primitive condition. Also, all the phylogenetic analyses using maximum parsimony, maximum likelihood, and neighbor joining methods showed a monophyletic relationship among Cobitis. The basal position of the Caspian C. cf. sibirica reported here reflects the eastern Asiatic origin cf. the European Cobitis and establishes C. cf. sibirica as an independent lineage. The Korean C. pacifica diverged next to C. cf. sibirica in basal group from the genus Cobitis. This result is in agreement with the hypothesized Asiatic origin of some European freshwater fish lineages. The phylogenetic relationships in this study showed a close affinity between C. zanadreai and C. sinensis. Two new species, C. tetralineata and C. pacifica in Korea also are closely related to monophyletic group clustering the type species of the Acanestrinia subgenus (C. elongata) with all the endemic Italian species (C. bilineata and C. zanandreai). This may suggest that the affinity between the Korean and Danubian-Italian imply genetic convergence or genetic plesiomorphic state between allopatric species that are separated for the Miocene. The mtDNA-based phylogeny for the species of the genus Cobitis from Kores and Europe permits phylogenetic assessment of the morphological transitions of Iamina circularis.

Molecular Systematics of Tephritidae (Insecta : Diptera): Testing Phylogenetic Position of Korean Acidiella spp. (Trypetini) Using Mitochondrial 16S rDNA Sequences

  • Han, Ho-Yeon;Ro, Kyung-Eui
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.13-18
    • /
    • 2002
  • Phylogenetic relationships of Korean Acidiella species were tested using mitochondrial 16S ribosomal RNA gene sequences. We used 16 published sequences as outgroup, and 10 new sequences for nine Korean Acidiella species as ingroup. The number of aligned sites was 1,281 bp, but 1,135 bp were used for the analysis after excluding sites with missing data or gaps. Among these 1,135 sites, 464 sites were variable and 340 were informative for parsimony analysis. Phylogenetic information was extracted from this data set using neighbor-joining, maximum likelihood and maximum parsimony methods and compared to a morphology-based phylogenetic hypothesis. Our molecular data suggest that: (1) the tribe Trypetini appears to be monophyletic even when the nine additional Acidiella species are added to our previous phylogenetic analysis; (2) all the Korean Acidiella species belong to the Trypeta group, but the genus Acidiella is not supported as monophyletic; (3) the close relationship of A. circumvaga, A. issikii, and A. sapporensis is supported; (4) the close relationship of A. pachypogon and two additional new Acidiella species is strongly supported; and (5) the possible presence of two or more cryptic species among the specimens previously identified as A. obscuripennis is suggested. Sequence data from the mitochondrial 16S rDNA allowed us to better understand the systematic status of Korean Acidiella species. They indicated that the current concept about the genus Acidiella is insufficient and needs to be refined further. This study also showed a few interesting relationships, that had not been recognized by morphological study alone. Based on this study, we were able to plan further experiments to analyze relationships within the Trypeta Group.

Mitochondrial DNA Sequence Variations and Genetic Relationships among Korean Thais Species (Muricidae: Gastropoda)

  • Lee, Sang-Hwa;Kim, Tae-Ho;Lee, Jun-Hee;Lee, Jong-Rak;Park, Joong-Ki
    • Animal Systematics, Evolution and Diversity
    • /
    • 제27권1호
    • /
    • pp.1-17
    • /
    • 2011
  • Thais Roding, 1798, commonly known as rock-shell, is among the most frequently found gastropod genera worldwide on intertidal rocky shores including those of Japan, China, Taiwan and Korea. This group contains important species in many marine environmental studies but species-level taxonomy of the group is quite complicated due to the morphological variations in shell characters. This study examined the genetic variations and relationships among three Korean Thais species based on the partial nucleotide sequences of mitochondrial cox1 gene fragments. Phylogenetic trees from different analytic methods (maximum parsimony, neighbor-joining, and maximum likelihood) showed that T. bronni and T. luteostoma are closely related, indicating the most recent common ancestry. The low sequence divergence found between T. luteostoma and T. bronni, ranging from 1.53% to 3.19%, also corroborates this idea. Further molecular survey using different molecular marker is required to fully understand a detailed picture of the origin for their low level of interspecific sequence divergence. Sequence comparisons among conspecific individuals revealed extensive sequence variations within the three species with maximum values of 2.43% in T. clavigera and 1.37% in both T. bronni and T. luteostoma. In addition, there is an unexpectedly high level of mitochondrial genotypic diversity within each of the three Korean Thais species. The high genetic diversity revealed in Korean Thais species is likely to reflect genetic diversity introduced from potential source populations with diverse geographic origins, such as Taiwan, Hong Kong, and a variety of different coastal regions in South China and Japan. Additional sequence analysis with comprehensive taxon sampling from unstudied potential source populations will be also needed to address the origin and key factors for the high level of genetic diversity discovered within the three Korean Thais species studied.

Two Maternal Lineages Revealed by Mitochondrial DNA D-loop Sequences in Chinese Native Water Buffaloes (Bubalus bubalis)

  • Lei, Chu-Zhao;Zhang, Wei;Chen, Hong;Lu, Fan;Ge, Qing-Lan;Liu, Ruo-Yu;Dang, Rui-Hua;Yao, Yun-Yi;Yao, Li-Bo;Lu, Zi-Fan;Zhao, Zhong-liang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권4호
    • /
    • pp.471-476
    • /
    • 2007
  • Little is known about the origin and genetic diversity of swamp buffaloes in China. To obtain more knowledge on genetics of the water buffalo in China, the complete mitochondrial D-loop sequences of 30 samples from 6 native types were investigated. The results revealed 12 mitochondrial haplotypes with 50 polymorphic sites. Among these polymorphic sites, there were 49 transitions and 1 transversion. The average nucleotide diversity and haplotype diversity estimated from mtDNA D-loop region in 6 Chinese water buffalo types were 0.00684 and 0.798, respectively, showing rather abundant mitochondrial genetic diversity. The Neighbor-Joining (NJ) tree of mtDNA of Chinese water buffaloes was constructed according to the 12 haplotypes. The NJ tree indicated two lineages being designated lineage A and lineage B, in which lineage A was predominant, and lineage B was at low frequency. The new lineage B was first discovered and defined in 6 Chinese water buffalo types. These results showed that two different maternal lineages were involved in the origin of domestic swamp buffaloes in China and the lineage B was probably an introgression from Southeast Asian buffaloes.

Investigation of MC1R SNPs and Their Relationships with Plumage Colors in Korean Native Chicken

  • Hoque, M.R.;Jin, S.;Heo, K.N.;Kang, B.S.;Jo, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권5호
    • /
    • pp.625-629
    • /
    • 2013
  • The melanocortin 1 receptor (MC1R) gene is related to the plumage color variations in chicken. Initially, the MC1R gene from 30 individuals was sequenced and nine polymorphisms were obtained. Of these, three and six single nucleotide polymorphisms (SNPs) were confirmed as synonymous and nonsynonymous mutations, respectively. Among these, three selected SNPs were genotyped using the restriction fragment length polymorphism (RFLP) method in 150 individuals from five chicken breeds, which identified the plumage color responding alleles. The neighbor-joining phylogenetic tree using MC1R gene sequences indicated three well-differentiated different plumage pigmentations (eumelanin, pheomelanin and albino). Also, the genotype analyses indicated that the TT, AA and GG genotypes corresponded to the eumelanin, pheomelanin and albino plumage pigmentations at nucleotide positions 69, 376 and 427, respectively. In contrast, high allele frequencies with T, A and G alleles corresponded to black, red/yellow and white plumage color in 69, 376 and 427 nucleotide positions, respectively. Also, amino acids changes at position Asn23Asn, Val126Ile and Thr143Ala were observed in melanin synthesis with identified possible alleles, respectively. In addition, high haplotype frequencies in TGA, CGG and CAA haplotypes were well discriminated based on the plumage pigmentation in chicken breeds. The results obtained in this study can be used for designing proper breeding and conservation strategies for the Korean native chicken breeds, as well as for the developing breed identification markers in chicken.

Discrimination of Korean Native Chicken Lines Using Fifteen Selected Microsatellite Markers

  • Seo, D.W.;Hoque, M.R.;Choi, N.R.;Sultana, H.;Park, H.B.;Heo, K.N.;Kang, B.S.;Lim, H.T.;Lee, S.H.;Jo, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권3호
    • /
    • pp.316-322
    • /
    • 2013
  • In order to evaluate the genetic diversity and discrimination among five Korean native chicken lines, a total of 86 individuals were genotyped using 150 microsatellite (MS) markers, and 15 highly polymorphic MS markers were selected. Based on the highest value of the number of alleles, the expected heterozygosity (He) and polymorphic information content (PIC) for the selected markers ranged from 6 to 12, 0.466 to 0.852, 0.709 to 0.882 and 0.648 to 0.865, respectively. Using these markers, the calculated genetic distance (Fst), the heterozygote deficit among chicken lines (Fit) and the heterozygote deficit within chicken line (Fis) values ranged from 0.0309 to 0.2473, 0.0013 to 0.4513 and -0.1002 to 0.271, respectively. The expected probability of identity values in random individuals (PI), random half-sib ($PI_{half-sibs}$) and random sibs ($PI_{sibs}$) were estimated at $7.98{\times}10^{-29}$, $2.88{\times}10^{-20}$ and $1.25{\times}10^{-08}$, respectively, indicating that these markers can be used for traceability systems in Korean native chickens. The unrooted phylogenetic neighbor-joining (NJ) tree was constructed using 15 MS markers that clearly differentiated among the five native chicken lines. Also, the structure was estimated by the individual clustering with the K value of 5. The selected 15 MS markers were found to be useful for the conservation, breeding plan, and traceability system in Korean native chickens.