홈네트워크(Home Network)와 같이 개방된 환경에서 여러 개의 아토셀(Ato-cell)로 구성된 ZigBee 클러스터는 측정 및 수집 정보의 전달에 대한 안전한 보안이 요구된다. 또한 ZigBee 디바이스간 인증을 위해 발생되는 마스터 키 관리 및 Access Control List(ACL), 디바이스 자원 등 여러 가지 보안의 문제점이 논의되고 있다. 선행연구로 부모-자식간의 해쉬체인 기법(Hash Chain Method)이나 토큰 키(token-key), 공개키(public-key) 인증기법 등이 연구되고 일부는 표준에 반영되었다. 이와 관련하여 본 논문에서는 홈네트워크 ZigBee 구현 시스템에서 디바이스의 복제와 사이빌 공격(Sybil Attack)에 대한 탐지 기법으로 이웃 디바이스 검색을 보안에 적용, 확대하였다. 이웃 검색(neighbor detection)의 응용기법은 주변 디바이스에 대한 정보를 활용하여 새로운 디바이스와 이웃 디바이스의 ACL 정보를 포함 및 비교하여 인중을 한다. 이를 통해 악의적인 디바이스(malicious device)의 사이빌 공격, 디바이스 복제에 대한 침입 탐지 및 해킹 방지를 구현하였다. 또한 홈네트워크 기기를 ITU-T SG17와 ZigBee Pro를 고려하여 사용자 접근 권한, 시간, 날짜, 요일의 4개를 적용하여 레벨과 룰로 구분하여 구현하였다. 결과적으로 볼 때 제안방식이 악성 디바이스의 탐지 성공 및 시간 측면에서 우수한 것으로 나타났다.
무선센서 네트워크 환경에서 활용될 수 있는 계층구조 라우팅 프로토콜은 망상의 노드들이 물리적으로 가까운 위치에 존재하더라도 경로는 계층적으로 제공되어 데이터 전달에 많은 홉 수가 소요된다. 또한, Node Failure와 Association Error가 발생했을 때도 관리용 메시지의 발생으로 추가적인 에너지를 소모한다. 본 논문에서는 이러한 경로 배정 시 발생되는 비효율성을 개선하고 싱크(Sink) 주위 노드의 에너지 소모율을 줄일 수 있는 경로 배정 알고리즘인 SHP(Shortest Hop Routing)의 성능을 분석한다. SHP는 Redirect_ACK의 메시지 형식을 추가하고 계층적 라우팅의 NL(Neighbor List)을 효율적으로 사용한 라우팅 알고리즘이다. 본 논문에서 네트워크 크기별과 형태별, Sink Position의 위치별, POS(Personal Operating Space)의 크기 별로 나눠 시뮬레이션 하였다. 그 결과, 대표적 계층적 라우팅의 Zigbee Hierarchical Routing과 HiLow보다 나은 성능을 보였다.
본 논문은 펨토셀이 도입된 IEEE 802.16e 시스템에서 효율적인 핸드오버를 위한 이웃 기지국 관리 기법을 제안하고 컴퓨터 모의 실험을 통해 성능을 평가한다. 제안하는 방식에서는 두 가지 기법을 사용하여 단말이 핸드오버를 위해 스캐닝 해야 하는 펨토셀의 수를 줄이고 이를 통해 빠르고 효율적인 핸드오버를 가능하도록 한다. 첫 번째 기법에서 매크로 기지국은 매크로셀을 다수의 구역으로 나누고 각 구역에 속한 펨토셀 정보를 구분하여 방송한다. 이를 수신한 단발은 자신이 속한 구역의 펨토셀만을 대상으로 스캐닝을 수행함으로써 핸드오버 소모 시간 및 전력을 줄일 수 있다. 두 번째 기법에서는 각 펨토셀이 자신으로부터 일정한 거리 내에 존재하는 주변 펨토셀들의 핸드오버 관련 정보를 직접 수집하고 방송함으로써 단말이 스캐닝할 펨토셀의 수를 줄일 수 있다. 컴퓨터 모의 실험 결과는 스캐닝 시 소모 시간 및 사용 전력, 그리고 스캐닝 효율 측면에서 제안한 방식이 기존 방식에 비해 상당한 성능개선이 있음을 보여준다.
본 논문에서는 SVM과 협업적 필터링을 이용한 소비자 맞춤형 시장 분석 기법을 제안하였다. 제안하는 소비자 맞춤형 시장 분석 기법은 DC(Data Classification) 모듈, ICF(Improved Collaborative Filtering) 모듈, 그리고 CMA(Customized Market Analysis) 모듈로 구성된다. DC 모듈은 SVM을 이용하여 온 오프라인 쇼핑몰과 전통시장의 특성을 가격, 품질평가, 주력상품으로 분류하고, ICF 모듈은 나이 가중치와 직업 가중치를 추가한 유사도를 생성하고, 사용자들간의 구매 아이템에 대한 유사도를 이용하여 네트워크를 생성하고, 이웃 노드의 추천 리스트를 생성한다. 그리고 CMA 모듈은 DC모듈의 데이터 분류 결과와 ICF 모듈의 추천 리스트를 이용하여 사용자 맞춤형 시장 분석 결과를 제공한다. 제안된 사용자 맞춤형 추천리스트와 기존의 사용자기반 추천 리스트를 비교한 결과, 기존의 협업적 필터링기법을 이용한 추천리스트의 경우, precision는 0.53, recall은 0.56, F-measure은 0,57인데 반해, 제안하는 소비자 맞춤형 추천리스트는 precision이 0.78, recall은 0.85, 그리고 F-measure은 0.81로 나타났다. 즉, 제안하는 소비자 맞춤형 추천리스트가 좀 더 정확한 것으로 나타났다.
An injective coloring of a graph G is an assignment of colors to the vertices of G so that any two vertices with a common neighbor receive distinct colors. A graph G is said to be injectively $k$-choosable if any list $L(v)$ of size at least $k$ for every vertex $v$ allows an injective coloring ${\phi}(v)$ such that ${\phi}(v){\in}L(v)$ for every $v{\in}V(G)$. The least $k$ for which G is injectively $k$-choosable is the injective choosability number of G, denoted by ${\chi}^l_i(G)$. In this paper, we obtain new sufficient conditions to be ${\chi}^l_i(G)={\Delta}(G)$. Maximum average degree, mad(G), is defined by mad(G) = max{2e(H)/n(H) : H is a subgraph of G}. We prove that if mad(G) < $\frac{8k-3}{3k}$, then ${\chi}^l_i(G)={\Delta}(G)$ where $k={\Delta}(G)$ and ${\Delta}(G){\geq}6$. In addition, when ${\Delta}(G)=5$ we prove that ${\chi}^l_i(G)={\Delta}(G)$ if mad(G) < $\frac{17}{7}$, and when ${\Delta}(G)=4$ we prove that ${\chi}^l_i(G)={\Delta}(G)$ if mad(G) < $\frac{7}{3}$. These results generalize some of previous results in [1, 4].
Job shop scheduling with m different machines and n different jobs is a NP-hard problem of combinatorial optimization. The purpose of the paper is to develop the heuristic method using tabu search for job shop scheduling to minimize makespan or mean flowtime. To apply tabu search to job shop scheduling problem, in this paper we propose the several move methods that employ insert moves in order to generate the neighbor solutions, and present the efficient rescheduling procedure that yields active schedule for a changed operation sequence by a move of operations. We also discuss the tabu search techniques of diversifying the search of solution space as well as the simple tabu search. By experiments, we find the appropriate tabu list size and tabu attributes, and analyze the proposed tabu search techniques with respect to the quality of solutions and the efforts of computation. The experimental results show that the proposed tabu search techniques using long-term memory function have the ability to search a good solution, and are more efficient in the mean flowtime minimization problem than in the makespan minimization.
We are developing a web-based movie recommender system that catches and reasons with user profiles and ratings to recommend movies. In the paper, we outline the current status of our implementation with particular emphasis on the mechanisms used to provide effective recommendations. Social recommender systems collect ratings of items from many individuals and use nearest-neighbor techniques to make recommendations to a user. However, these methods only depend on the ratings and ignore other useful information. Our primary concern is to provide an approach that can recommend the movies based on not only the user ratings but also the significant amount of other information that is available about the nature of each items - such as cast list or movie genre. We experimentally evaluate our approach and compare them to conventional social filtering, which suggests merits to our approach.
Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.
본 논문에서는 360 비디오의 특성을 이용하여 픽쳐 경계에서 코딩 효율을 증가시키는 움직임 벡터 예측 방법을 제안한다. VVC의 화면간 예측에서 움직임 벡터 후보군을 구성할 때 주변 블록의 위치가 픽쳐의 경계 바깥이면 후보군 구성 과정에서 제외되어 픽쳐 경계에서 코딩 효율이 감소하게 된다. 이를 해결하기 위해 360 비디오의 부/복호화를 위한 투영 방법의 특성을 이용하여 이미 복호화된 정보로부터 픽쳐의 경계에서 추가로 후보군을 구성하는 방법을 제안한다. 제안하는 방법의 성능 평가를 위하여 JVET-360 CTC의 임의 접근 환경에서 VTM6.0 및 360Lib9.1와 비교한다. 그 결과로써 제안하는 방법은 추가 계산 복잡도 없이 휘도 성분에서 평균 0.02%, 색차 성분에서 각각 평균 0.05%, 0.06%의 비트율 감소를 보이고, 픽쳐의 경계에서는 비트율이 휘도 성분에서 평균 0.29%, 색차 성분에서 각각 평균 0.45%, 0.43% 감소하였다. 그리고 DSCQS (Double Stimulus Continuous Quality-Scale) 방법을 통해 제안하는 방법의 주관적 화질 평가를 수행하여 MOS (Mean Opinion Score)값을 얻는다. MOS값은 평균 0.03 향상되었고, MOS값과 비트량을 이용하여 BD-MOS를 구한다. 그 결과, 제안하는 방법의 성능이 최대 8.78%, 평균 5.18% 향상하였다.
기술의 발달로 의료장비의 현대화가 이루어지고 PACS와 같은 시스템이 보편화되면서 디지털 의료영상처리 기술에 대한 관심이 높아지고 있다. 영역분할 기술은 디지털의료영상처리에서 첫 번째 단계로 필요한 전처리기술이다. 영역분할을 통하여 특정 부위가 종양, 부종, 파손 및 괴사세포와 같은 이상 현상을 나타내는 것을 조기에 발견할 수 있도록 해주고, 의사들이 적절한 처방을 내려줄 수 있도록 도와줄 수 있다. 특히 두뇌영상에서 백질, 회백질 및 CSF(cerebral spinal fluid)의 영역분할은 두뇌연구의 핵심기술이다. 이들 의료영상에서 기존의 윤곽선이나 영역 확장법은 애매한 경계선과 장기내의 물리적 특성이 비균질하여 영역분할의 실패율을 높게 한다. 퍼지기반의 영역분할 알고리듬은 불분명한 경계를 이루는 장기의 영역분할에 강하다고 알려져 있다. 본 연구에서는 자기공명영상이 강하게 나타내는 잡음에도 안정적인 퍼지기반의 영역분할 알고리듬을 제안하였다. 제안된 알고리듬은 이웃화소들을 군집시킬 때에 평균과 분산의 정보를 이용하여 최소한의 계산을 추가함으로써, 기존의 퍼지기반 영역분할 방법에 비하여 실패율이 대략 30% 이하로 낮은 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.