• 제목/요약/키워드: Negative stiffness

검색결과 188건 처리시간 0.029초

경추 추나요법이 추골동맥과 기저동맥 혈류에 미치는 영향 (Influence on Vertebral Artery and Basilar Artery Blood flow by Cervical CHUNA Manual Therapy)

  • 신병철;김도환;김상돈;송용선
    • 대한추나의학회지
    • /
    • 제1권1호
    • /
    • pp.45-53
    • /
    • 2000
  • Objectives : CHUNA therapy that removes compression of dislocated vertebral bones has positive effect, but sometimes improper CHUNA manual therapy may give rise to negative effect. The aim of this study is to make sure that cervical CHUNA manual therapy give positive effect or negative effect to the blood flow velocity of vertebral artery(VA) and basilar artery(BA) by Trancranial Doppler sonography(TCD). Methods : We performed TCD study on 20patients(male 5, female 15, mean ages 38.5 years) with diagnosis like cervical movement related disorder, headache or dizziness. After we measured mean blood flow velocity(Vm) of VA and BA before cervical CHUNA therapy(Pre-CCT) and after cervical CHUNA therapy(Post-CCT), statistically evaluated the results. Results: The patients received cervical CHUNA therapy for TA sequel, HIVD of cervical spine, headache, dizziness, neck stiffness etc. VA Vm was $31.9{\pm}8.0cm/sec$ before CHUNA therapy, but significantly increased $35.0{\pm}8.7cm/sec$ after CHUNA therapy (p < 0.05). But, there was no significant variation of BA Vm between $41.8{\pm}7.5cm/sec$ Pre-CCT and $41.2{\pm}8.5cm/sec$ Post-CCT(p>0.05). Though VA Vm slightly increased after CHUNA therapy in normal range group, there was no significant variation between VA Vm Pre-CCT and VA Vm Post~CCT. In VA Vm decrease group, VA Vm significantly increased after CHUNA therapy(p<0.05). But, there was no significant variation of BA Vm between Pre-CCT and Post-CCT in BA Vm normal range group and BA Vm decrease group(p>0.05). Conclusions: These findings suggest that cervical CHUNA manual therapy have positive effect on blood flow velocity of VA and BA.

  • PDF

부모멘트부의 효율성을 고려한 외부강선으로 보강된 콘크리트 거더 연속교의 거동 (Structural Behavior of Concrete Girder Continuous Bridges Strengthened with External Tendons Considering the Efficiency at Negative Moment Region)

  • 한만엽;조병두;전세진
    • 콘크리트학회논문집
    • /
    • 제25권5호
    • /
    • pp.555-564
    • /
    • 2013
  • 이 연구에서는 연속 거더교의 외부강선 보강 효과를 극대화할 수 있는 효율적인 방법을 도출하였다. 등가하중개념을 적용하여 기존 방법 대비 제안된 보강 방법의 개선점을 명확히 분석하였다. 보강 효과의 검증을 위해 연속보의 외부강선 보강 실험을 실시하여 외부강선에 의한 내하력 향상 효과를 고찰하였다. 연속보 실험체는 콘크리트 거더 연속교의 일반적인 시공법과 동일하게 바닥판 슬래브 부분만을 연속화하여 제작하였다. 실험 결과 동일한 크기의 외력이 작용할 때 외부강선이 보강된 실험체는 보강되지 않은 실험체에 비해 처짐이나 변형률이 대폭 감소하는 경향을 보였으며, 부재의 강성도 또한 증가하였다. 특히 제안된 방법은 연속교 중간 지점부의 부모멘트에 의한 바닥판의 인장응력을 효과적으로 감소시킬 수 있음이 확인되었다.

음의 푸아송비를 갖도록 변환된 와이어 직조 Kagome (A Wire-Woven Kagome Transformed to have a Negative Poisson's Ratio)

  • 강대승;한승철;박종우;;강기주
    • 대한기계학회논문집A
    • /
    • 제40권9호
    • /
    • pp.827-833
    • /
    • 2016
  • 와이어 직조 Kagome는 와이어로 직조된 Periodic Cellular Metal의 일종으로서 Kagome 구조로 이루어져 있다. 와이어 직조 Kagome는 무게 대비 높은 강도와 강성을 가지면서 대량 생산에도 큰 가능성을 가지는 것으로 알려졌다. 본 연구에서는 ${\alpha}$-cristobalite 구조적 특성을 모사하여 음의 푸아송비를 갖는 새로운 직조 구조체를 개발하였다. 와이어 직조 Kagome를 제작한 후 사면체 단위셀 부분을 강구와Epoxy를 이용하여 채우고, 초기 변형을 주어 시편을 제작하였다. 또한 FEA 시뮬레이션을 통해 제작 가능성을 확인하고, 실제 제작한 구조체를 대상으로 기계적 특성을 연구하였다.

딥러닝과 전이학습을 이용한 콘크리트 균열 인식 및 시각화 (Recognition and Visualization of Crack on Concrete Wall using Deep Learning and Transfer Learning)

  • 이상익;양경모;이제명;이종혁;정영준;이준구;최원
    • 한국농공학회논문집
    • /
    • 제61권3호
    • /
    • pp.55-65
    • /
    • 2019
  • Although crack on concrete exists from its early formation, crack requires attention as it affects stiffness of structure and can lead demolition of structure as it grows. Detecting cracks on concrete is needed to take action prior to performance degradation of structure, and deep learning can be utilized for it. In this study, transfer learning, one of the deep learning techniques, was used to detect the crack, as the amount of crack's image data was limited. Pre-trained Inception-v3 was applied as a base model for the transfer learning. Web scrapping was utilized to fetch images of concrete wall with or without crack from web. In the recognition of crack, image post-process including changing size or removing color were applied. In the visualization of crack, source images divided into 30px, 50px or 100px size were used as input data, and different numbers of input data per category were applied for each case. With the results of visualized crack image, false positive and false negative errors were examined. Highest accuracy for the recognizing crack was achieved when the source images were adjusted into 224px size under gray-scale. In visualization, the result using 50 data per category under 100px interval size showed the smallest error. With regard to the false positive error, the best result was obtained using 400 data per category, and regarding to the false negative error, the case using 50 data per category showed the best result.

Monte Carlo analysis of earthquake resistant R-C 3D shear wall-frame structures

  • Taskin, Beyza;Hasgur, Zeki
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.371-399
    • /
    • 2006
  • The theoretical background and capabilities of the developed program, SAR-CWF, for stochastic analysis of 3D reinforced-concrete shear wall-frame structures subject to seismic excitations is presented. Incremental stiffness and strength properties of system members are modeled by extended Roufaiel-Meyer hysteretic relation for bending while shear deformations for walls by Origin-Oriented hysteretic model. For the critical height of shear-walls, division to sub-elements is performed. Different yield capacities with respect to positive and negative bending, finite extensions of plastic hinges and P-${\delta}$ effects are considered while strength deterioration is controlled by accumulated hysteretic energy. Simulated strong motions are obtained from a Gaussian white-noise filtered through Kanai-Tajimi filter. Dynamic equations of motion for the system are formed according to constitutive and compatibility relations and then inserted into equivalent It$\hat{o}$-Stratonovich stochastic differential equations. A system reduction scheme based on the series expansion of eigen-modes of the undamaged structure is implemented. Time histories of seismic response statistics are obtained by utilizing the computer programs developed for different types of structures.

대형 선박의 파이프 루프 설계식 개발 (I) (The Development of Design Formulas for Pipe Loops Used in Large Vessels (I))

  • 박치모;양박달치;이종훈
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.132-137
    • /
    • 2008
  • Ship structures are subject to severe environmental loads causing appreciable hull girder bending which in turn affects the piping system attached to the main hull in the form of a displacement load. While this load may cause failure in the pipes, loops have been widely adopted as a means of preventing this failure, with the idea that they may lower the stress level in a pipe by absorbing some portion of the displacement load. But since such loops also have some negative effects, such as causing extra manufacturing cost, deteriorating the function of the pipe, and occupying extra space, the number and dimensions of the loops adopted need to be minimized. This research developed design formulas for pipe loops, modeling them as frames composed of beam elements, where not only bending but also shear deflection is taken into account. The accuracy of the proposed design formulas was verified by comparing two results respectively obtained by the proposed formulas and MSC/NASTRAN. The paper concludes with a sample example showing the efficiency of the proposed formulas.

Seismic Influence on Subsea Pipeline Stresses

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.1-14
    • /
    • 2017
  • The safety analysis of an earthquake is carried out during the operation of a subsea pipeline and an onshore pipeline. Several cases are proposed for consideration. In the case of a buried pipeline, permanent ground deformation by the earthquake and an increase of internal pressure by the acceleration of the earthquake should be considered. In the case of a subsea pipeline, a bending moment is caused by liquefaction of the backfill material on a trenched seabed, etc., which results in a high bending moment of the buried pipeline. The bending moment causes the collapse of the subsea pipeline or a leak of crude oil or gas, which results in economic loss due to enormous environmental contamination and social economic loss owing to operation functional failure. Thus, in order to prevent economic loss and operation loss, structurally sensitive design with regard to seismic characteristics must be performed in the buried pipeline in advance, and the negative impact on the buried pipeline must be minimized by conducting a thorough analysis on the seabed and backfilling material selection. Moreover, it is proposed to consider the selection of material properties for the buried pipeline. A more economical review is also required for detailed study.

원심모형실험에 의한 사질토 지반내 터널 복공의 역학적 거동에 관한 연구 (Analysis of the Structural Behaviors of Tunnel Linings in Joomunjin Standard Sand by Centrifugal Model Tests)

  • 김택곤;김영근;박중배;이희근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.161-168
    • /
    • 1999
  • A series of centrifuge model tests were performed in order to investigate the behaviors of various tunnel linings. A 1/100-scaled aluminum and hydrostone horseshoe tunnel linings with a radius km, height km were buried in a depth of C/D=3 with dry Joomunjin standard sand, the relative density of which was 86%. Bending moments and thrusts along the tunnel circumference were measured by 12 strain gages. Earth pressures in soil and on lining were estimated by pressure transducers, ground surface settlements at center and edges by using LVDTs. Average Ko(coefficient of earth pressure at rest) was 0.39 for the model sand. The structural behaviors of lining depended on its damaged conditions. But, as a rule, on the crown, the tensile circumferential strain of lining occurred at the inner surface, and the compressive at the outer surface, then positive bending moment was created at the crown. The circumferential strain of the inner surface on the springline was tensile, and the outer compressive, so negative bending moment was measured at the springline. For hydrostone linings, cracks initiated at the inner surface on the crown, and the outer on the springline over average 40g.

  • PDF

간헐적 전광(癲狂)을 동반한 세균성 뇌막염후유증 1례(例)의 임상적 고찰 (Clinical study on the one case of sequelae of pneumococal meningoencephalitis with intermittent confusion)

  • 원철환;조규선;이원철;이동원;김지형
    • 대한한방내과학회지
    • /
    • 제21권3호
    • /
    • pp.515-519
    • /
    • 2000
  • Developing of antibiotic, bacterial meningitis is one of the disease of high mortality. Especially in case of gram negative, pneumococal meningitis, they have high mortality and neurological disorders after treatment. Main symptoms of bacterial meningitis are fever, headache, vomit, neck stiffness and coma etc. In oriental medicine, acute feverish infectious diseases have been treated as wenbing(溫病). We can divide wenbing into 8 kinds. Bacterial meningitis is included as Chunwen(春溫), fengwen(風溫) in the sight of similarity on the symptoms and falling ill. Comparing with CVA, we have too rare cases of treating bacterial meningitis with oriental medicine. A case of sequelae of bacterial meningitis patient diagnosed as Chunon, pungon showed prominent improvement by herb med and acupuncture treatment etc.

  • PDF

Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.431-446
    • /
    • 2017
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. In this study, buckling of horizontal concrete columns reinforced with Zinc Oxide (ZnO) nanoparticles is analyzed. Due to the presence of ZnO nanoparticles which have piezoelectric properties, the structure is subjected to electric field for intelligent control. The Column is located in foundation with vertical springs and shear modulus constants. Sinusoidal shear deformation beam theory (SSDBT) is applied to model the structure mathematically. Micro-electro-mechanic model is utilized for obtaining the equivalent properties of system. Using the nonlinear stress-strain relation, energy method and Hamilton's principal, the motion equations are derived. The buckling load of the column is calculated by Difference quadrature method (DQM). The aim of this study is presenting a mathematical model to obtain the buckling load of structure as well as investigating the effect of nanotechnology and electric filed on the buckling behavior of structure. The results indicate that the negative external voltage applied to the structure, increases the stiffness and the buckling load of column. In addition, reinforcing the structure by ZnO nanoparticles, the buckling load of column is increased.