• Title/Summary/Keyword: Negative stiffness

Search Result 188, Processing Time 0.025 seconds

A Study of continuous PSC bridge with a reinforcement steel plate (보강강판을 이용한 연속 PSC 교량 공법에 관한 연구)

  • Koo Min-Se;Kim Hun-Hee;Jung Young-Do
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.422-429
    • /
    • 2005
  • It is limited to decrease height or section even by system conversion to indeterminate structure - continuous beam - in existing PSC girder bridges. In this study, the movement of connection is analyzed through actual field test, by increasing stiffness of negative moment area in continuous PSC bridge and developing continuous PSC bridge with embedded steel plate, that can overcome the demerit of existing connection. As a result, it is confirmed that the body unification of the connection is being realized and maintained. Moreover, the height of a span is suggested in continuous PSC girder bridge with embedded steel plate by computational analysis

  • PDF

Behaviors of PSC-Beam Bridges According to Continuity of Spans (1) (PSC-Beam 교량의 연속화에 따른 거동해석 (1))

  • 곽효경;서영재;정찬묵;박영하
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.11-20
    • /
    • 1999
  • This paper deals with behaviors of PSC-Beam bridges according to continuity of spans. To analyze the long-term behavior of bridges, an analytical model which can simulate the effects of creep, the shrinkage of concrete, and the cracking of concrete slabs in the negative moment regions is introduced. To consider the different material properties across the sectional depth, the layer approach in which a section is divided into imaginary concrete and steel layers is adopted. The element stiffness matrix is constructed according to the assumed displacement field formulation, and the creep and shrinkage effects of concrete are considered in accordance with the first-order algorithm based on the expansion of the creep compliance. Correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed model. Besides, many uncertainties related to the continuity of spans are analyzed to minimize deck cracking at interior supports.

Unstable Brake Pad Mode Due to Friction-velocity Slope (마찰 곡선에 의한 불안정 브레이크 패드 모드 해석)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1206-1212
    • /
    • 2012
  • The brake squeal propensity due to the friction-velocity curve is numerically investigated. The finite element models for the disc and pad are correlated with the modal test. In the friction-engaged system modeling, the friction function is linearized at the equilibrium. The damping term induced by friction-velocity slope is incorporated into the equations of motion. In the complex eigenvalue analysis, it is found that the pad shear mode is very sensitive to the friction curve. The results shows that the squeal propensity of the pad shear mode can be controlled by the design parameters such as pressure and stiffness.

Redistribution of Negative Moments in Beams Subjected to Seismic Load (지진하중에 대한 보 부모멘트의 재분배)

  • Eom, Tae-Sung;Park, Hong-Gun;Kim, Jae-Yo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.145-146
    • /
    • 2010
  • A moment redistribution method was developed for earthquake design of reinforced concrete moment-resisting frames. For a frame designed with strong column-weak beam, the moment redistribution mechanism was investigated. Based on the result, the relationship between redistributed moment and plastic rotation in plastic hinges was established. By using the relationship, we developed a method for the evaluation of plastic rotations during the moment redistribution, addressing the effects of various design parameters including member stiffness, load condition, and plastic mechanism of structure.

  • PDF

접촉결합부를 갖는 원통구조물의 열적,동적 특성 연구

  • 김선민;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.244-249
    • /
    • 1997
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure,which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness,damping as well as contact heat conduction in the structure. In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed propeties are strongly required especially in the contact elements adjacent to the rotational or linear bearing This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush,the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantiy.

Strategic Utilization of Fiber Reinforced UHSC in Slab-Column Connections

  • Yoon, Young-Soo;Lee, Joo-Ha;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.79-82
    • /
    • 2005
  • This study reports on the structural characteristics of slab-column connections using an ultra-high-strength-fiber-reinforced concrete from new and retrospective data. The parameters investigated were the ' puddling ' of ultra-high-strength-fiber-reinforced concrete and the use of high-strength concrete in the slab. The effects of these parameters on the punching shear capacity, negative moment cracking, and stiffness of the two-way slab specimens are investigated. Furthermore, the ACI Code (2002), the CSA Standard (1994), the BS Standard (1985) and the CEB-FIP Code (1990) predictions are compared to the experimental results obtained from some slab-column connections tested in this experiment and those tested by other investigators. The beneficial effects of the ultra-high-strength-fiber-reinforced concrete puddling and of the use of high-strength concrete are demonstrated. It is also concluded that the punching shear strength of slab-column connections is a function of the flexural reinforcement ratio.

  • PDF

A Study on Lateral Vibration at the Tail of Train for KTX (KTX 차량의 후미 횡 진동에 관한 연구)

  • Kim Jae-Chul;Lee Chan-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.6-11
    • /
    • 2005
  • During the acceptance test of KTX, lateral vibration of carbody at the tail of the train was found. The carbody lateral vibration was occurred on a straight line in the winter season. We analysis to find the cause of the lateral vibration and the countermeasure. The analysis results show that lateral stiffness of air spring is the most important parameter to cause the carbody lateral vibration. The lateral vibration is occurred at frequency range $0.5{\sim}0.6Hz$ with a negative damping value. We also blow that natural frequency of lateral vibration increase with the train speed up to 1Hz at 300km/h.

  • PDF

Sensitivity Analysis of Load Trunsfer of Jointed Concrete Pavements Using 3-D Finite Element Model (3차원 유한요소 모형를 이용한 줄눈 콘크리트포장 하중전달의 민감도 분석)

  • Sun, Ren-Juan;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.145-157
    • /
    • 2008
  • Load transfer efficiency (LTE) reflects the structural performance of doweled and undoweled joints of Jointed Concrete Pavement (JCP). A 3-dimensional (3-D) model of JCP was built using ABAQUS software in this study. Three concrete slabs were placed on bonded sublayers composed of a base and subgrade. Spring elements were used to connect the adjacent slabs at joints. Different spring constants were input to the model to simulate different joint stiffness of the concrete pavement. The LTE of the joint increased with an increase of the spring constant. The effects of material properties and geometric shape on the behavior of JCP were analyzed using different elastic modulus and thickness of the slab and base in the modeling. The results showed the elastic modulus of the subgrade affected the behavior of the slab and LTE more than that of the base and the thickness of the slab and base. The effects of a negative temperature gradient on the behavior of the slab and LTE were more than that of positive and zero temperature gradients. Joints with low stiffness were more sensitive to the temperature gradient of the slab.

  • PDF

Industrial Fatigue and Low Back Pain of the Workers (산업장 근로자들의 피로자각증상과 요통)

  • Kim, Soon-Lae;Moon, Jung-Soon
    • Research in Community and Public Health Nursing
    • /
    • v.7 no.2
    • /
    • pp.400-409
    • /
    • 1996
  • To investigate industrial fatigue and low back pain, the questionaire survey for subjective symptoms of fatigue and low back pain was carried out among 591 male workers aged 20-55 employed in an automobile industry in Korea. Workers participated to this study were divided into low back pain group(LBP) and control group, according to the self-reports by written questionaires. The subjective sysptoms of fatigue comprised three groups of 10 items each, representing dullness and sleepiness(level of cerebral activation), difficulty in concentration(level of motivation) and bodily projection of fatigue. The resultant data were processed for $\chi^2-test$, t-test and a pearson's correlation coefficient to confirm the relationships. The results were as follows: 1. 30 items of fatigue subjective symptoms exeptone item, 'lack in perseverance', were directly associated with low back pain. 2. The percentage of fatigue complaint were sig nificantly higher in LBP group. 3. Of the 30 items of fatigue subjective symptoms, the highest percentage was accounted for 'eye strain'(27.9%), followed by 'whole body feels tired' and 'legs feel heavy'(22.9%), 'feel like lying'(21.4%), 'feel a pain in the low back'(18.7%), 'feel drowsy'(16.4%) and 'feel stiffness in the neck or the shoulders'(16.2%) in the order of sequence. 4. The average weighted score for the first group of fatigue items(dullness and sleepiness) was the largest among three groups and was followed by the second group(difficulty in concentration) and the third group(bodily projection of fatigue) in the order of sequence, suggesting the heavier shift work stress of the workers. 5. In the groups of the aged 30-40, work duration of 5-7yrs, heavy work amount and irregular work speed, significant high fatigue complaints were revealed in terms of eye strain, whole body feels tired, legs feel heavy, feel like lying, feel a pain in the low back and feel stiffness in the neck or the shoulders. 6. A significant negative correlations were shown between age, work duration and eleven subjective symptoms while positive reciprocal correlations were shown between eleven items with one another.

  • PDF

Inelastic Displacement Ratio for Strength-limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 비탄성 변위비)

  • Han, Sang-Whan;Lee, Tae-Sub;Seok, Seung-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2010
  • This study evaluated the effect of vibration, level of lateral yielding strength, site conditions, ductility factor, strain-hardening ratio, and post-capping ratio of the strength limited bilinear SDF systems on the inelastic displacement ratio. The nonlinear response history analysis was conducted using 240 ground motions which were collected at the sites classified as site classes B, C, and D according to the NEHRP. To account for the P-$\Delta$ effects, this study considered negative stiffness ratios ranging from -0.1 to -0.5 of elastic stiffness. Four different damping ratios are used: 2, 5, 10, and 20%. From this study, an equation of inelastic displacement ratio was proposed using nonlinear regression analysis.