• Title/Summary/Keyword: Negative stability

Search Result 813, Processing Time 0.027 seconds

Two-dimensional Numerical Simulation of Rainfall-induced Slope Failure (강우에 의한 사면붕괴에 관한 2차원 수치모의)

  • Regmi, Ram Krishna;Jung, Kwan-Sue;Lee, Gi-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.34-34
    • /
    • 2012
  • Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.

  • PDF

A stability on the solvents of 9-Phenyl-5,5'-Diphenyl-3,3'-Bis-(3-sulfopropy)-benzoxazolo carbocyanine triethyl ammonium salt (9-Phenyl-5,5'-Diphenyl-3,3'-Bis-(3-sulfopropy)-Benzoxazolo Carbocyanine Triethyl Ammonium Salt의 용매에 대한 안정성)

  • Kim, Yeoung-Chan
    • The Journal of Information Technology
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2004
  • The symmetric 9-phenyl-5,5'-diphenyl-3,3'-bis-(3-sulfopropyl)-benzoxazolo carbocyanine triethyl ammonium salt is of industrial importance as green-sensitizing dye in the spectral sensitization of emulsion microcrystals in negative film and positive paper-making. The stability on the solvents of benzoxazolo carbocyanine dye was measured by UV-Vis spectrophotometer, and then dye was stabilized in various solvents. The maximum absorption peak range in various solvents was 507nm~515nm. It was identified that the solvents can be used to photographic emulsion.

  • PDF

A review of wind-turbine structural stability, failure and alleviation

  • Rehman, Shafiqur;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.511-524
    • /
    • 2020
  • Advancements in materialistic life styles and increasing awareness about adverse climatic changes and its negative effects on human life have been the driving force of finding new and clean sources of energy. Wind power has become technologically mature and commercially acceptable on global scale. However, fossil fuels have been the major sources of energy in most countries, renewable energy (particularly wind) is now booming worldwide. To cope with this wind energy technology, various related aspects have to be understood by the scientific, engineering, utility, and contracting communities. This study is an effort towards the understanding of the (i) wind turbine blade and tower structural stability issues, (ii) turbine blade and tower failures and remedial measures, (iii) weather and seismic effects on turbine blade and tower failures, (iv) gear box failures, and (v) turbine blade and tower failure analysis tools.

The Stability of the Flexible Rotor Mounted on Circumferentially Grooved Floating Ring Journal Bearings (원주방향 급유홈 프로팅링 저널베어링으로 지지된 탄성 회전체의 안정성)

  • 정연민;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2205-2215
    • /
    • 1992
  • The stability of the flexible rotor mounted on circumferentially grooved floating ring journal bearings was investigated theoretically and experimentally. The floating ring journal bearing was analyzed by using JFO reformation boundary condition. The flexible shaft was analyzed by the finite element method based on Rayleigh beam theory. It was found that the measured ring speed agrees well with the theoretical results. The instability of the system due to not only the outer film but also the inner film of the bearing could be predicted by the theory which allows negative vapor pressure. The tendency that reducing the supply pressure of lubricant stabilizes the system was observed both experimentally and theoretically.

Dynamic Stability Depending on the Dielectric Anisotropy of the LC in the Fringe-Field Switching (FFS) mode (Fringe-Field Switching (FFS) 모드에서 액정의 유전율 이방성에 따른 동력학 안정성에 관한 연구)

  • 김미숙;김향율;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.224-230
    • /
    • 2003
  • The voltage-dependent transmittance curve of a homogeneously aligned liquid crystal (LC) cell driven by fringe-electric field(named FFS mode) was studied, while changing dielectric anisotropy of a LC. The results show that for a LC with positive dielectric anisotropy while positioning at initial position. Therefore, we conclude that the dynamic stability is strongly dependent on the types of the LCs and voltage-dependent dynamics of the LC with negative dielectric anisotropy is staler than that of the LC with positive dielectric anisotropy in the FFS mode.

Temperature Stability of Length-Extensional Vibration Modes in PZT Ceramics (PZT세라믹스에 있어서 길이진동모드의 온도안정성)

  • 이개명;현덕수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.726-730
    • /
    • 2001
  • Temperature stabilities of dielectric constraints and resonant frequencies of the substrates are very important in piezoelectric ceramics oscillators and filters. In this study, it was investigated temperature stability of the length-extensional vibration mode of Pb(Zr$\_$y/Ti$\_$1-y/)O$_3$+x[wt%]Cr$_2$O$_3$ ceramics. The mode can be utilized in fabricating ultra-small 455 kHz IF devices. Addition of Cr$_2$O$_3$ in morphotrophic phase PZT decreased the variations of dielectric constant, electro-mechanical coupling factor k$\_$31/ and resonant frequency by thermal shock. As additive weight of Cr$_2$O$_3$increased, the temperature coefficient of resonant frequency changed from positive number to negative one. And the composition tith temperature coefficient of resonant frequency was shifted to the one with increased Cr$_2$O$_3$ additive weigh by thermal aging.

  • PDF

Effects of Fiscal Instability on Financial Instability

  • HWANG, SUNJOO
    • KDI Journal of Economic Policy
    • /
    • v.44 no.3
    • /
    • pp.49-74
    • /
    • 2022
  • This paper empirically examines how fiscal instability affects financial instability. According to an IMF forecast (2021a), the fiscal space in Korea will be steadily reduced in the future. The theoretical literature predicts that if fiscal stability is undermined, financial stability will also be in danger given that government guarantees on banks are weakened and/or sovereign bonds held in banks become riskier. This paper empirically finds the existence of this negative impact of fiscal instability on financial instability. I also find that the intensity of this fiscal-financial relationship is greater in a country where (i) its currency is not a reserve currency such as the US dollar or euro, (ii) its banking sector is large relative to government sector, and/or (iii) its private credit to GDP is high. Korea has all of these three characteristics and hence needs to put more effort into maintaining fiscal stability.

Linear Stability Analysis of an Out-of-plan Motion of Vibration of a Two Degree-of-freedom with Contact Stiffness (마찰기인 접촉 강성을 가지는 2-자유도계 면외 방향 진동 시스템의 선형 안정성 해석)

  • Joe, Yong-goo;Shin, Ki-hong;Lee, Hyun-young;Oh, Jae-Eung;Lee, Su-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.259-265
    • /
    • 2005
  • A two-degree-of-freedom out-of-plane model with contact stiffness is presented to describe dynamical interaction between the pad and disc of a disc brake system. It is assumed that the out-of-plane motion of the system depends on the friction force acting along the in-plane direction. Dynamic friction coefficient is modelled as a function of both in-plane relative velocity and out-of-plane normal force. When the friction coefficient depends only on the relative velocity, the contact stiffness has the role of negative stiffness. The results of stability analysis show that the stiffness of both pad and disc is equally important. Complex eigen value analysis is conducted for the case that the friction coefficient is also dependent on the normal force. The results further verify the importance of the stiffness. It has also been found that increasing the gradient of friction coefficient with respect to the normal force makes the system more unstable.

Bi-layer Electrolyte for Preventing Solid Oxide Fuel Cell Stack Degradation (고체산화물 연료전지 스택 열화 방지를 위한 전해질 기술)

  • Park, Mi Young;Bae, Hongyeul;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.289-294
    • /
    • 2014
  • The stability of a solid oxide fuel cell (SOFC) stack is strongly dependent on the magnitude and profile of the internal chemical potential of the solid electrolyte. If the internal partial pressure is too high, the electrolyte can be delaminated from the electrodes. The formation of high internal pressure is attributed to a negative cell voltage, and this phenomenon can occur in a bad cell (with higher resistance) in a stack. This fact implies that the internal chemical potential plays an important role in determining the lifetime of a stack. In the present work, we fabricate planar type anode-supported cells ($25cm^2$) with a bi-layer electrolyte (with locally increased electronic conduction at the anode side) to prevent high internal pressure, and we test the fabricated cells under a negative voltage condition. The results indicate that the addition of electronic conduction in the electrolyte can effectively depress internal pressure and improve the cell stability.

Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries (소듐 이온전지용 주석 음극의 안정화를 위한 PVdF 옥세틱 구조의 영향)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.507-513
    • /
    • 2018
  • This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.