• Title/Summary/Keyword: Negative bias

Search Result 455, Processing Time 0.024 seconds

Effect of negative oxygen ion bombardment on the gate bias stability of InGaZnO

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.160-160
    • /
    • 2015
  • InGaZnO (IGZO) thin-film transistors (TFTs) are very promising due to their potential use in high performance display backplane [1]. However, the stability of IGZO TFTs under the various stresses has been issued for the practical IGZO applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of IGZO thin film. In this study, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of IGZO TFTs by this new deposition method.

  • PDF

Effect of SiO2 Buffer Layer Thickness on the Device Reliability of the Amorphous InGaZnO Pseudo-MOS Field Effect Transistor (SiO2 완충층 두께에 따른 비정질 InGaZnO Pseudo-MOS Field Effect Transistor의 신뢰성 평가)

  • Lee, Se-Won;Hwang, Yeong-Hyeon;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • In this study, we fabricated an amorphous InGaZnO pseudo-MOS transistor (a-IGZO ${\Psi}$-MOSFET) with a stacked $Si_3N_4/SiO_2$ (NO) gate dielectric and evaluated reliability of the devices with various thicknesses of a $SiO_2$ buffer layer. The roles of a $SiO_2$ buffer layer are improving the interface states and preventing degradation caused by the injection of photo-created holes because of a small valance band offset of amorphous IGZO and $Si_3N_4$. Meanwhile, excellent electrical properties were obtained for a device with 10-nm-thick $SiO_2$ buffer layer of a NO stacked dielectric. The threshold voltage shift of a device, however, was drastically increased because of its thin $SiO_2$ buffer layer which highlighted bias and light-induced hole trapping into the $Si_3N_4$ layer. As a results, the pseudo-MOS transistor with a 20-nm-thick $SiO_2$ buffer layer exhibited improved electrical characteristics and device reliability; field effective mobility(${\mu}_{FE}$) of 12.3 $cm^2/V{\cdot}s$, subthreshold slope (SS) of 148 mV/dec, trap density ($N_t$) of $4.52{\times}1011\;cm^{-2}$, negative bias illumination stress (NBIS) ${\Delta}V_{th}$ of 1.23 V, and negative bias temperature illumination stress (NBTIS) ${\Delta}V_{th}$ of 2.06 V.

Flexural Resistance Statistics of Composite Plate Girders (국내 생산 강재를 적용한 강합성 거더 휨저항강도의 통계적 특성)

  • Shin, Dong Ku;Kim, Chun Yong;Rho, Joon Sik;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • The objective of the present study is to provide statistical resistance statistics for steel-concrete composite plate girder sections under positive and negative moments. Statistical properties on yield strength, tensile strength, elongation, and fracture toughness of domestic structural steel products, gathered from an analysis of over 16,000 samples, were evaluated. Using the steel samples for the plate girder, the bias factor and the coefficient of variation of the ultimate flexural resistance for representative composite plate girder sections under positive and negative flexures were presented. In calculating the ultimate flexural resistance of the composite section, the moment curvature relationships were developed using the incremental load approach considering material nonlinearity for the steel girder. The predicted statistics can be used in the future for the efficient calibration of LRFD code.

Plasma source ion implantations for shallow $p^+$/n junction

  • Jeonghee Cho;Seuunghee Han;Lee, Yeonhee;Kim, Lk-Kyung;Kim, Gon-Ho;Kim, Young-Woo;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.180-180
    • /
    • 2000
  • Plasma source ion implantation is a new doping technique for the formation of shallow junction with the merits of high dose rate, low-cost and minimal wafer charging damage. In plasma source ion implantation process, the wafer is placed directly in the plasma of the appropriate dopant ions. Negative pulse bias is applied to the wafer, causing the dopant ions to be accelerated toward the wafer and implanted below the surface. In this work, inductively couples plasma was generated by anodized Al antenna that was located inside the vacuum chamber. The outside wall of Al chamber was surrounded by Nd-Fe-B permanent magnets to confine the plasma and to enhance the uniformity. Before implantation, the wafer was pre-sputtered using DC bias of 300B in Ar plasma in order to eliminate the native oxide. After cleaning, B2H6 (5%)/H2 plasma and negative pulse bias of -1kV to 5 kV were used to form shallow p+/n junction at the boron dose of 1$\times$1015 to 5$\times$1016 #/cm2. The as-implanted samples were annealed at 90$0^{\circ}C$, 95$0^{\circ}C$ and 100$0^{\circ}C$during various annealing time with rapid thermal process. After annealing, the sheet resistance and the junction depth were measured with four point probe and secondary ion mass spectroscopy, respectively. The doping uniformity was also investigated. In addition, the electrical characteristics were measured for Schottky diode with a current-voltage meter.

  • PDF

The Effects of Obesity Stress, Weight Bias, and Heath Care on BMI in Soldiers of Non-combat Area (비전투 지역 군인의 비만 스트레스, 체중편견 및 건강관리가 체질량지수에 미치는 영향)

  • Kim, Kyeng Jin;Na, Yeon Kyung
    • Korean Journal of Occupational Health Nursing
    • /
    • v.25 no.3
    • /
    • pp.199-207
    • /
    • 2016
  • Purpose: The purpose of this study was to identify the obesity stress, weight bias and health care on Body Mass Index (BMI) in soldiers of non-combat area and to provide data for improving the quality of their life. Methods: This research involved 165 soldiers working in non-combat area. Data collection was conducted from November 1 to 20, 2015. Statistical analysis of the collected data were t-test and ANOVA, $Scheff{\acute{e}}$ method post hoc analysis, Pearson's correlation coefficients, and multiple liner regression using IBM SPSS 22.0. Results: The mean score of obesity stress was moderate ($19.05{\pm}5.28$). The mean score of weight bias was 69.03 and health care was 2.41 points. There are a positive correlation between obesity stress and BMI (r=.19, p<.05). Weight bias (r=-.19, p<.01) and health care (r=-.26, p<.01) among the subjects had negative correlations with BMI. In a multiple liner regression, obesity stress (${\beta}=.18$, p<.05), health care (${\beta}=-.18$, p<.05) were associated with BMI. Conclusion: Based on the findings that obesity stress and health care influence BMI, there is a need to control stress and to properly set proper guidelines on health care for soldiers.

Design and Fabrication of Oscillator Improving Q of Inductor Using Negative Resistance (부성저항을 이용한 인덕터의 Q값 개선과 이를 이용한 발진기의 설계 및 제작)

  • 권순철;윤영섭;류원열;최현철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.218-221
    • /
    • 2001
  • In this paper, High Q Inductor using negative resistance circuit and the ceramic inductor was designed and fabricated at 2GHz. It was Improved the inductor of Q=90 using a inductor with Q=30 added to negative resistance circuit at 2GHz. As a result, at the bias condition of 3V and 16mA, the output power and phase noise in the operation frequency 2.01GHz are 5dBm and -115.34dBc/Hz at 100kHz offset from carrier, respectively. Phase noise was improved -10dBc/Hz at 100kHz offset compared to only using ceremic inductor.

  • PDF

Study on Electro-optic Characteristics of Fringe-field Switching Twisted Nematic Mode using a Liquid Crystal with Negative Dielectric Anisotropy (유전율 이방성이 음인 액정을 이용한 Fringe-field Switching Twisted Hematic 모드의 전기광학 특성 연구)

  • 송일섭;신성식;이종문;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.530-535
    • /
    • 2004
  • We have studied 90$^{\circ}$ twisted nematic mode switching by fringe electric field(F-TN mode) using a liquid crystal (LC) with negative dielectric anisotropy. In the device, two polarizers are parallel each other, electrodes exist only on bottom substrate, and one of rubbing direction is coincident with polarizer axis. Therefore, the cell shows a black state before a voltage is applied. With a bias voltage generating fringe-electric field, the LC twists perpendicular to fringe electric field such that the LCs are almost homogeneously aligned except near the bottom surface since the negative type of the LC is used. Consequently, the new device exhibits much wider viewing angle than that of the conventional TN mode due to in-plane switching and relatively high transmittance since the LC director above whole electrode area aligns parallel to the polarizer axis.

Novel AC bias compensation scheme in hydrogenated amorphous silicon TFT for AMOLED Displays

  • Parikh, Kunjal;Chung, Kyu-Ha;Choi, Beom-Rak;Goh, Joon-Chul;Huh, Jong-Moo;Song, Young-Rok;Kim, Nam-Deog;Choi, Joon-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1701-1703
    • /
    • 2006
  • Here we describe a novel driving scheme in the form of negative AC bias stress (NAC) to compensate shift in the threshold voltage for hydrogenated amorphous silicon (${\alpha}$-Si:H) thin film transistor (TFT) for AMOLED applications. This scheme preserves the threshold voltage shift of ${\alpha}$-Si:H TFT for infinitely long duration of time(>30,000 hours) and thereby overall performance, without using any additional TFTs for compensation. We briefly describe about the possible driving schemes in order to implement for real time AMOLED applications. We attribute most of the results based on concept of plugging holes and electrons across the interface of the gate insulator in a controlled manner.

  • PDF

User's Regret on Update Decisions of Mobile Applications (모바일 애플리케이션 업데이트 선택에 대한 사용자 후회)

  • Park, Sang-Cheol
    • The Journal of Information Systems
    • /
    • v.24 no.3
    • /
    • pp.75-94
    • /
    • 2015
  • Purpose While new versions of mobile applications could offer users better computing environment, users are not always comfortable with them for various reasons. Considering making update decisions is important task for users, it is crucial for us to understand users' behavior and attitude on app updates. The purpose of this study is to explain why mobile users succumb to both reactance toward the update and satisfaction to the current version, ultimately leading them to feel the regret by employing three theoretical perspectives including regret theory, status quo bias theory and the dual model. Design/methodology/approach Survey data collected from 204 mobile users was used to test the research model using partial least squares analysis. The results have shown that both reactance toward the update and satisfaction to the current version have negative impacts on individuals' decisions to update, which leading to their regret after updating the applications Findings By integrating both status quo bias and regret theory in the model, this study tried to explain why mobile users feel regret in application update settings. More specifically, this study has proposed a novel framework that introduces an individual's update decision on mobile applications.

Improvement in Bias Stability of Amorphous IGZO Thin Film Transistors by High Pressure H2O2 Annealing

  • Song, Ji-Hun;Kim, Hyo-Jin;Han, Yeong-Hun;Baek, Jong-Han;Jeong, Jae-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.231.2-231.2
    • /
    • 2014
  • 훌륭한 전기적 특성을 갖는 ZnO 기반의 산화물 반도체 박막트랜지스터(TFT)는 AMOLEDs에 적용될 수 있다. 하지만 이러한 장점에도 불구하고 산화물 반도체 TFT소자에 전압이 인가되었을 때 문턱 전압이 이동하게 되는 안정성 문제를 갖는다. 따라서 이를 해결하기 위한 연구가 널리 진행 되고 있다. 본 연구소에서는 고압 분위기 열처리를 통해 안정성의 원인으로 작용할 수 있는 산소공공(Oxygen vacancy)을 감소시키는 연구를 진행하였다. 산화물 반도체 TFT소자의 안정성을 향상시키는 대표적인 분위기 열처리로는 산소 고압 열처리(HPA)가 있으며, 또한 H2O 기체를 사용한 열처리를 통해 TFT소자의 안정성을 높일 수 있다는 연구 결과가 보고된 바 있다. 본 연구에서는 IGZO TFT소자에 H2O보다 더 큰 반응성을 갖는 산화제인 H2O2 기체를 사용한 HPA를 통해 positive bias stress(PBS) 및 negative bias illumination stress(NBIS) 조건에서 안정성이 향상됨을 확인하였고 이를 H2O 기체를 사용한 경우와 비교하였다. 그 결과 H2O2 기체를 산화제로 사용할 때 기존 H2O 기체에 비해 효과적인 PBS 및 NBIS 신뢰성 개선을 확인하였다.

  • PDF