• Title/Summary/Keyword: Negative Pressure Wave

Search Result 40, Processing Time 0.024 seconds

Mean Flow Velocity Measurement Using the Sound Field Reconstruction (음장 재구성에 의한 관내 평균유속 측정)

  • Kim, Kun-Soon;Cheung, Wan-Sup;Kwon, Hyu-Sang;Park, Kyung-Am;Paik, Jong-Seung;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.924-929
    • /
    • 2000
  • This paper addresses a new technique of measuring the mean flow velocity over the cross sectional area of the pipe using sound field reconstruction. When fluid flows in the pipe and two plane waves propagate oppositely through the medium, the flow velocity causes the change of wave number of the plane waves. The wave number of the positive going plane wave decreases and that of negative going one increases in comparison to static medium in the pipe. Theoretical backgrounds of this method are introduced in detail and the measurement of mean flow velocity using the sound field reconstruction is not affected by velocity profile upstream of microphones.

Effect of High Pressure of Voltammetric Parameters of Copper (구리의 전압전류법적 파라미터에 미치는 압력의 영향)

  • Zun Ung Bae;Heung Lark Lee;Hong Soon Park
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.399-405
    • /
    • 1989
  • The dependence of voltammetric parameters on the pressure for the reduction of Cu(II) in 0.5M KCl aqueous solution has been studied. In this system micro platinum electrode, standard calomel electrode and a helix type of platinum wire were used as the working, the reference and the auxilary electrode, respectively. With increasing the pressure from 1 to 1,800 bars, the half wave potentials of first reduction wave are shifted to the more negative potentials. And the diffusion currents of first and second reduction wave become considerably larger with increase in pressure from 1 to about 1,000 bars but are getting smaller beyond 1,000 bars. The good linear relationships between diffusion current and the concentrations of Cu(II) are established over all pressure range($1{\sim}1,800$ bars). The reversibility of the each reduction step is not changed with increasing pressure.

  • PDF

COMPUTATION OF FREE-SURFACE FLOWS DUE TO PRESSURE DISTRIBUTION

  • Jack Asavanant;Montri Maleewong;Choi, Jeong-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.137-152
    • /
    • 2001
  • Steady two-dimensional flows due to an applied pressure distribution in water of finite depth are considered. Gravity is included in the dynamic boundary condition. Gravity is included in the dynamic boundary condition. The problem is solved numerically by using the boundary integral equation technique. It is shown that, for both supercritical and subcritical flows, solutions depend on three parameters: (i) the Froude number, (ii) the magnitude of applied pressure distribution, and (iii) the span length of pressure distribution. For supercritical flows, there exist up to two solutions corresponding to the same value of Froude number for positive pressures and a unique solution for negative pressures. For subcritical flows, there are solutions with waves behind the applied pressure distribution. As the Froude number decreases, these waves when the Froude numbers approach the critical values.

  • PDF

Experimental Study Shock Waves in Superfluid Helium Induced by a Gasdynamic Shock Wave Impingement

  • Yang, Hyung-Suk;Nagai, Hiroki;Murakami, Masahide;Ueta, Yasuhiro
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.43-47
    • /
    • 2000
  • Two modes of shock waves, a compression shock wave and a thermal shock wave, propagating in He II have been investigated. The shock waves are at a time generated by the impingement of a gasdynamic shock wave onto a He II free surface in the newly developed superfluid shock tube facility. Superconductive temperature sensors, piezo-type pressure transducers and visualization photograph were used for the measurement of them and the phenomena induced by them were investigated in detail. It is found that the compression by a compression shock wave in He II causes temperature drop because He II has negative thermal expansion coefficient. the thermal shock wave is found to be of a single triangular waveform with a limited shock strength. The waveform is similar to that generated by stepwise strong heating from an electrical heater for relatively long heating time. In the experiments at the temperatures near the lambda temperature, no thermal shock wave is sometimes detected in shock compressed He II. It can be understood that shock compression makes He Ii convert to He I in which no thermal shock wave is excited.

  • PDF

Flow Regimes of Continuously Stratified Flow over a Double Mountain (두 개의 산악 위에서의 연속적으로 성층화된 흐름의 흐름 체계)

  • Han, Ji-Young;Kim, Jae-Jin;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2007
  • The flow regimes of continuously stratified flow over a double mountain and the effects of a double mountain on wave breaking, upstream blocking, and severe downslope windstorms are investigated using a mesoscale numerical model (ARPS). According to the occurrence or non-occurrence of wave breaking and upstream blocking, three different flow regimes are identified over a double mountain. Higher critical Froude numbers are required for wave breaking and upstream blocking initiation for a double mountain than for an isolated mountain. This means that the nonlinearity and blocking effect for a double mountain is larger than that for an isolated mountain. As the separation distance between two mountains decreases, the degree of flow nonlinearity increases, while the blocking effect decreases. A rapid increase of the surface horizontal velocity downwind of each mountain near the critical mountain height for wave breaking initiation indicates that severe downslope windstorms are enhanced by wave breaking. For the flow with wave breaking, the numerically calculated surface drag is much larger than theoretically calculated one because the region with the maximum negative perturbation pressure moves from the top to the downwind slope of each mountain as the internal jump propagating downwind occurs.

An Electromagnetic Shock Wave Generator Employing a Solenoid Coil for Extracorporeal Shock Wave Therapy: Construction and Acoustical Properties (체외 충격파 치료술을 위한 솔레노이드 코일을 이용한 전자기식 충격파 발생기: 구성 및 음향학적 특성)

  • Choi Min Joo;Lee Jong Soo;Kang Gwan Suk;Paeng Dong Guk;Lee Yoon Joon;Cho Chu Hyun;Rim Geun Hie
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.271-281
    • /
    • 2005
  • An electromagnetic type shock wave generator suitable for extracorporeal shock wave therapy has been constructed by employing a solenoid coil. The Property of the shock waves produced by the shock wave generator was evaluated using a needle hydrophone. It was shown that, as the capacitor discharging voltage increased from 8 to 18 kV, the Positive Peak Pressure (P+) of the shock wave increased non-linearly from 10 to 77 Wa. In contrast. the negative peak Pressure (f) varied between -3.2 and -6.8 MPa. had its absolute maximum of -6.9 ma at 14 kV The peak amplitudes P+ measured repeatedly under the same voltage setting varied within $5\;\%$ from mean values and this is very small compared to about $50\;\%$ for electrohydraulic type shock wave generators. It could be observed, from the hydrophone signal recorded over 1 ms. several sequential acoustic impulses representing bubble collapses. namely. acoustic cavitation. induced by the shock wave. A technique based on wavelet transformation was used to accurately measure the time delay between the 1st and 2nd collapse known to be closely related to the shock strength. It was observed that the measured time delay increased almost linearly from 120 to $700\;{\mu}s$ with the shock wave Pressure P+ increasing from 10 to 77 MPa.

The Effect of Negative Pressure Phase in Blast Load Profile on Blast Wall of Offshore Plant Topside (해양플랜트 Topside 방화벽에 폭발압의 부압구간이 미치는 영향)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, Yong-Hee;Choi, Jae-Woong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.281-288
    • /
    • 2014
  • As a gas explosion is the most fatal accident in shipbuilding and offshore plant industries, all safety critical elements on the topside of offshore platforms should retain their integrity against blast pressure. Even though many efforts have been devoted to develop blast-resistant design methods in the offshore engineering field, there still remain several issues needed to be carefully investigated. From a procedure for calculation of explosion design pressure, impulse of a design pressure model having completely positive side only is determined by the absolute area of each obtained transient pressure response through the CFD analysis. The negative pressure phase in a general gas explosion, however, is often quite considerable unlike gaseous detonation or TNT explosion. The main objective of this study is to thoroughly examine the effect of the negative pressure phase on structural behavior. A blast wall for specific FPSO topside is selected to analyze structural response under the blast pressure. Because the blast wall is considered an essential structure for blast-resistant design. Pressure time history data were obtained by explosion simulations using FLACS, and the nonlinear transient finite element analyses were performed using LS-DYNA.

A Numerical Study on the Effect of Pressure Relief Ducts on the Normal Pressure in a Preliminary Design of Honam-Jeju Subsea Tunnel (호남-제주 해저터널 가상설계의 공기압력 제어 덕트가 열차 주행에 미치는 영향에 대한 수치해석 연구)

  • Seo, Sangyeon;Ha, Heesang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.17-27
    • /
    • 2016
  • High-speed trains have been developed widely in European countries and Japan in order to transport large quantity of people and commodities in short time. Additionally, a high speed train is one of the most desirable and environmentally friendly transportation methods. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Due to this aerodynamic pressure against the train, a large amount of traction is required for the operation of a train in a tunnel. Therefore, it is essential to incorporate a pressure relief system in a tunnel in order to reduce aerodynamic resistance caused by a high-speed train. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate positive and negative normal pressures acting on a train. One-dimensional numerical simulations were carried out in order to estimate the effect of pressure relief systems.

A Study of the Synoptic Climatology on the January's Cold and Warm Winter Especially in 600hPa Circulation : Case Study 1992 and 1984 in January (500hPa면 순환특성을 중심으로 한 동계 이상 한.난월의 종관기후학적 연구 -1992년과 1984년의 1월의 경우-)

  • Lee, Byung-Gon;Min, Woo-Ki
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.103-111
    • /
    • 1996
  • I followed the results of Lee and Min(1996) for classification of the months of cold and warm winter. The winter of 1992 and 1984 recorded extraordinary cold and warm. Study of the Synoptic Climatology on the January's cold and warm winter is below: (1) Climatology's characteristic. Temperature of extremely high temperature month is higher compared with extremely low temperature month. Also precipitation is more than over low temperature month compared with extremely high temperature month. (2) In circulation of 500hPa surface. (1) Extremely high temperature month At 500hPa, negative geopotential height anomalies in high latitude, three trough developed over eastern Canada. In midlatitude, a deep trough persisted in the central North Pacific and conspicuous positive height anomalies showed over northwestern Europe, Where a blocking anticyclone developed. It had been warmer than normal since last year in Korea due mainly to positive height anomalies stretched from central Siberia (2) Extremely low temperature month Appeared the strong meridional circulation and negative height anomalies showed from Far East to the Mid-Pacific and appeared ridge in the west of the North America and Atlantic. Alutien Low shows negative deviation during 1984. In northern hemisphere shows negative deviation. Therefore, we can show that the surface pressure distribution and height distribution of 500hPa level are closely connected with each other as parts of general circulation. (3) The characteristics of the general circulation pattern of the 500hPa (1) Extremely high temperature month is high than extremely low temperature month1984 in Zonal index (2) The majority type is S type in 500hPa level circulation of extremely high temperature month but extremely high temperature month is M type (3) The wave number in 500hPa all shows 3 wave. So can not distinguished by only predominant wave number pattern.

  • PDF

Estimation of Overflow-Induced Pressure and Velocity on a Mound-Type Sea Dike (월류 시 마운드형태 방조제에 작용하는 압력과 유속 산정)

  • Kim, Taehyung;Yeh, Harry;Kim, Sungwoung;Choi, Myoungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.5-13
    • /
    • 2015
  • Wave overflow can cause a failure of sea dike structure. Based on the results of the field surveys on mound-type sea dike, the failure of vicinity of crown and the scouring of toe at the landward was revealed as the most representative failure example. One of the main factors related to this failure pattern is overflow-induced pressure and velocity. Thus, in this study the analytical equations which can determine the pressure and the velocity induced by overflow in sea dike were proposed and verified. To accomplish this, assumed that the flow is quasi-steady and irrotational, and concentric circular streamlines around the vicinity of crown and toe of the sea dike. Flow was assumed as critical state and Bernoulli equation was used to develop the equations that can determine the pressure and velocity at the vicinity of crown and toe of the sea dike. Using these equations, the pressure and the velocity were calculated in condition of various overflow depths and radiuses of circular streamline. Based on the calculation results, while a negative pressure was occurred at the vicinity of crown, a significant amount of positive pressure occurred at the toe. The existence of flow-induced shear stresses was also confirmed. In addition, the limitation of the proposed equations was discussed.