• Title/Summary/Keyword: Negative Flow Control

Search Result 116, Processing Time 0.026 seconds

Determinants of Bilateral Foreign Direct Investment Intra-ASEAN : Panel Gravity Model

  • Zebua, Hasrat Ifolala;Nasrudin, Nasrudin
    • Asian Journal of Business Environment
    • /
    • v.6 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Purpose - This paper aims to find and analyze factors that determine the flows of bilateral foreign direct investment in intra-ASEAN. It specifically focuses on the dimension of macro-economic, natural resources, human resources, and the quality of governance. Research design, data, and methodology - Data were collected from 64 bilateral relations between ASEAN nations from 2002 to 2013. Panel gravity model was utilized to find factors that determine the flows of bilateral foreign direct investment. Results - Significant factors were identified that determine the flows of bilateral foreign direct investment: GDP home country, GDP host country, real interest rate, distance, and total natural resources rent. Unexpectedly, natural resources have a negative effect. Conclusions - In a situation of increasing the flow of FDI among the countries of ASEAN, the government should control the interest rates and maintain good relations with nearby countries. The negative effect of total natural resource rents implies that ASEAN countries should not depend on their natural resources to attract foreign investments.

Influences of Blowing Jet Type and Jet Angle on the Flow Control of Elliptic Airfoil (타원형 날개꼴의 유동제어에서 브로잉 제트 형태와 제트 각도의 영향)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jang, Young-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.47-53
    • /
    • 2004
  • An Experimental investigation into the effects of the blowing jet type and jet orientation on the aerodynamic characteristics over an elliptic type airfoil is explored. This study is aimed at expanding the data base of blowing jet application in separation control of elliptic airfoil. Present data includes: surface pressure, blowing jet exit velocity measurements and integrated aerodynamic loads. The experiments were performed for an elliptic airfoil at Reynolds number $8.22{\times}10^5$. The improvement of effects of pulsed jet on the increase of aerodynamic characteristics was significant for the post-stall angle. For reduced mass flow rates, pulsed jet allowed considerably higher lift to be generated. The jet orientation also showed dominant parameter on the separation control Positive jet angle delay or avoid separation, whereas negative jet angle promotes it.

Relations between rheological and mechanical properties of fiber reinforced mortar

  • Cao, Mingli;Li, Li;Xu, Ling
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • Fresh and hardened behaviors of a new hybrid fiber (steel fiber, polyvinyl alcohol fiber and calcium carbonate whisker) reinforced cementitious composites (HyFRCC) with admixtures (fly ash, silica fume and water reducer) have been studied. Within the limitations of the equipment and testing program, it is illustrated that the rheological properties of the new HyFRCC conform to the modified Bingham model. The relations between flow spread and yield stress as well as flow rate and plastic viscosity both conform well with negative exponent correlation, justifying that slump flow and flow rate test can be applied to replace the other two as simple rheology measurement and control method in jobsite. In addition, for the new HyFRCC with fly ash and water reducer, the mathematical model between the rheological and mechanical properties conform well with the quadratic function, and these quadratic function curves are always concave upward. Based on mathematical analysis, an optimal range of rheology/ flowability can be identified to achieve ideal mechanical properties. In addition, this optimization method can be extended to PVA fiber reinforced cement-based composites.

ADJOINT METHOD FOR CONTROLLED CAVITATION INVERSE NOZZLE DESIGN

  • Petropoulou, S.;Gavaises, M.;Theodorakakos, A.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.283-288
    • /
    • 2006
  • A mathematical methodology is proposed for designing nozzle hole shapes producing controlled geometric cavitation. The proposed methodology uses an unstructured RANS flow solver, with the ability to compute sensitivity derivatives via an adjoint algorithm. The adjoint formulation for the N-S equations is presented while variation of the turbulence viscosity is not taken into account during the geometry modifications. The sensitivities are calculated in a mode independently of the shape parameterisation. The method is used to develop and evaluate conceptual shapes for nozzle hole cavitation reduction. The localized region at the hole inlet producing cavitation, is parameterised using its radius of curvature, while a cost function is formulated to eliminate the negative pressures present at this location. Sensitivity derivatives are used to assess the dependence of the localized region on the minimum pressure, and to drive the geometry to the targeted shape. The results show that the computer model can provide nozzle hole entry shapes that produce predefined flow characteristics, and thus can be used as an inverse design tool for nozzle hole cavitation control.

Manufacturing and characterization of ECR-PECVD system (ECR-PECVD 장치의 제작과 특성)

  • 손영호;정우철;정재인;박노길;황도원;김인수;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • An ECR-PECVD system with the characteristics of high ionization rat다 ability of plasma processing in a wide pressure range and deposition at low temperature was manufactured and characterized for the deposition of thin films. The system consists of a vacuum chamber, sample stage, vacuum gauge, vacuum pump, gas injection part, vacuum sealing valve, ECR source and a control part. The control of system is carried out by the microprocessor and the ROM program. We have investigated the vacuum characteristics of ECR-PECVD system, and also have diagnosed the characteristics of ECR microwave plasma by using the Langmuir probe. From the data of system and plasma characterization, we could confirmed the stability of pressure in the vacuum chamber according to the variation of gas flow rate and the effect of ion bombardment by the negative DC self bias voltage. The plasma density was increased with the increase of gas flow rate and ECR power. On the other hand, it was decreased with the increase of horizontal radius and distance between ECR source and probe. The calculated plasma densities were in the range of 49.7\times10^{11}\sim3.7\times10^{12}\textrm{cm}^{-3}$. It is also expected that we can estimate the thickness uniformity of film fabricated by the ECR-PECVD system from the distribution of the plasma density.

  • PDF

Filter- and Denuder-Based Organic Carbon Correction for Positive Sampling Artifacts

  • Hwang, InJo;Na, Kwangsam
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • This study describes (1) the impact of positive sampling artifacts caused by not only a filter-based sampling, but also a denuder-based sampling in the determination of particle-phase organic carbon (POC), (2) the effect of sample flow rate on positive artifacts, and (3) an optimum flow rate that provides a minimized negative sampling artifact for the denuder-based sampling method. To achieve the goals of this study, four different sampling media combinations were employed: (1) Quartz filter-alone (Q-alone), (2) quartz filter behind quartz-fiber filter (QBQ), (3) quartz filter and quartz filter behind Teflon filter (Q-QBT), and (4) quartz filter behind carbon-based denuder (Denuder-Q). The measurement of ambient POC was carried out in an urban area. In addition, to determine gas-phase OC (GOC) removal efficiency of the denuder, a Teflon filter and a quartz filter were deployed upstream and downstream of the denuder, respectively with varying sample flow rates: 5, 10, 20, and 30 LPM. It was found that Q-alone sampling configuration showed a higher POC than QBQ, Q-QBT, and Denuder-Q by 12%, 28%, and 23%, respectively at a sample flow rate of 20 LPM due to no correction for positive artifact caused by adsorption of GOC onto the filter. A lower quantity of GOC was collected from the backup quartz filter on QBQ than that from Q-QBT. This was because GOC was not in equilibrium with that adsorbed on the front quartz filter of QBQ during the sampling period. It is observed that the loss of particle number and mass across the denuder increases with decreasing sample flow rate. The contribution o f positive arti facts to POC decreased with increasing sample flow rate, showing 29%, 25%, and 22% for 10, 20, and 30 LPM, respectively. The 20 LPM turns out to be the optimum sample flow rate for both filter and denuder-based POC sampling.

The Screening Condition for the Immune Regulatory Responsor Using Mouse Fetal Thymic Organ Culture (쥐의 태아 흉선 조직 배양을 이용한 면역조절제 검색방법 확립)

  • Lee, Seung-Gak;Song, Min-Dong;Lee, Kwang-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.4
    • /
    • pp.286-292
    • /
    • 1997
  • We studied the screening condition for immune regulatory responsor. We focused on the T-lymphocytes leer this purpose. Mouse fetal thymic organ culture (FTOC) system and flow cytometric analysis were mainly used in this experiment. Even if FTOC is carried out in vivo condition, the pattern of thymic development in the condition of FTOC is similar to that of in vivo condition. In this regard, FTOC system might be very powerful tool to screen the immune regulator, especially concerning on T cells. To establish the optimum condition of FTOC to screen the Immune regulator, we focused on the optimum amount of dose and culture period. The cell number and surface antigens on T cells were also analysed by using hemacytometer and flow cytometer. To monitor the differentiation event, anti-CD3, anti-CD4 and anti-CD8 antibodies were used. Alkoxyglycerol and Phellodendri Cortex were used fur positive and negative control, respectively. Astragalus membranceus was used as test sample. From our analysis, we reached to conclusions that the best dose of extract is $50\;{\mu}g/ml$ of culture medium, the best culture period is for 9 days, and ethanol used as solvent has no toxicity to FTOC.

  • PDF

Effect of antibiotics treatment for edwardsiellosis of olive flounder Paralichthys olivaceus in biofloc environment (바이오플락 환경에서 넙치(Paralichthys olivaceus)의 에드워드병에 대한 항생제 치료 효과)

  • Park, Jung Jun;Kim, Seokryel
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.225-231
    • /
    • 2021
  • In biofloc culture for olive flounder, Paralichthys olivaceus, the possibility of antibiotics treatment was investigated against edwardsiellosis. After inducing edwardsiellosis by immersion in Edwardsiella tarda 1.2 × 105/mL suspension, the survival trends on various biofloc water management and some physiological changes were observed. For biofloc water management, six types of water treatments were carried out, which were no exchange without antibiotics as negative control, the exchange to stored biofloc water, the exchange to stored biofloc water with 20% flow-through, the exchange to fresh biofloc water, half fresh biofloc water and half sea water, and the complete flow-through. There was no significant physicochemical change on water qualities in any type. The exchange to fresh biofloc water was shown the highest survival ratio as 72.3%, and in case of stored biofloc water with 20% flow-through, the survival ratio was also significantly high as 62%. Plasma glucose, cholesterol, total protein, calcium, and magnesium were analyzed as physiological index. Mostly, there was no significant change, but plasma cholesterol showed an initial decrease in low survival group, and an initial increase with high survival group. Consequently, antibiotic treatment against a bacterial disease during biofloc culture is possible as long as the biofloc water management follow along properly.

A Study on the Hydraulic Vibration Characteristics of the Prefill Check Valve (프리필용 체크밸브의 유압진동 특성에 관한 연구)

  • Park, Jeong Woo;Han, Sung-Min;Lee, Hu Seung;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.8-15
    • /
    • 2021
  • A rear axle steering (RAS) system is attached to the rear of medium and large commercial vehicles that transport large cargo. The existing RAS systems are driven by electro-hydraulic actuator (EHA), and most commercialized EHAs consist of electric motors, hydraulic pumps, relief valves, prefill valves and cylinders. The prefill valve required for such EHAs is a type of check valve with extremely low cracking pressure that should not allow RAS to have noise or vibration, and the prefill valve prevents system negative pressure as well as unstable operation. Most papers on this topic rely on experiments to predict valve performance, and theoretically detailed modeling of valves or pipelines is performed, but it is very rare to evaluate hydraulic vibration characteristics by analysing everything from hydraulic pumps to valves comprehensively. In this study, we proposed an experimental circuit that can predict the performance of the prefill valve. The study also analysed the pressure-flow pulsation that is transmitted to the valve through the pipeline, and how the transmitted pressure-flow pulsation affects the valve vibration.

Distribution of Wind Force Coefficients on the Single-span Arched House (아치형 단동하우스의 풍력계수 분포에 관한 연구)

  • 이석건;이현우
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.28-36
    • /
    • 1992
  • The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on e single-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated by using the experimental data. The results obtained are as follows: 1. When the wind direction was normal to the wall, the maximum positive wind pressure along the height of the wall occurred approximately at two-thirds of the wall height because of the effects of boundary layer flow. 2. When the wind direction was 30$^{\circ}$ to the wall, the maximum positive wind force occurred at the windward edge of the wall. When the wind direction was parallel to the wall, the maximum negative wind force occurred at the windward edge of the wall. 3. The maximum negative wind force along the width of the roof appeared around the width ratio, 0.4, and that along the length of the roof appeared around the length ratio, 0.5. 4. According to the results of the mean wind force coefficients analysis, the maximum negative wind force occurred on the roof at the wind direction of 30$^{\circ}$. 5. The wind forces at the wind direction of 30$^{\circ}$ instead of 0$^{\circ}$ are recommended in the structural design of supports for a house. 6. To prevent partial damage of a house structure by wind forces, the local wind forces should be considered to the structural design of a house.

  • PDF