• 제목/요약/키워드: Negative Feature Decomposition

검색결과 5건 처리시간 0.016초

계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용 (Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition)

  • 김용세;강병구;정용희
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용 (Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition)

  • 김용세;강병구;정용희
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.

Wind loads on fixed-roof cylindrical tanks with very low aspect ratio

  • Lin, Yin;Zhao, Yang
    • Wind and Structures
    • /
    • 제18권6호
    • /
    • pp.651-668
    • /
    • 2014
  • Wind tunnel tests are conducted to investigate the wind loads on vertical fixed-roof cylindrical tanks with a very low aspect ratio of 0.275, which is a typical ratio for practical tanks with a volume of $100,000m^3$. Both the flat-roof tank and the dome-roof tank are investigated in present study. The first four moments of the measured wind pressure, including the mean and normalized deviation pressure, kurtosis and skewness of the pressure signal, are obtained to study the feature of the wind loads. It is shown that the wind loads are closely related to the behavior of flow around the structure. For either tank, the mean wind pressures on the cylinder are positive on the windward area and negative on the sides and the wake area, and the mean wind pressures on the whole roof are negative. The roof configurations have no considerable influence on the mean pressure distributions of cylindrical wall in general. Highly non-Gaussian feature is found in either tank. Conditional sampling technique, envelope method, and the proper orthogonal decomposition (POD) analysis are employed to investigate the characteristics of wind loads on the cylinder in more detail. It is shown that the patterns of wind pressure obtained from conditional sampling are similar to the mean pressure patterns.An instantaneous pressure coefficient can present a wide range from the maximum value to the minimum value. The quasi-steady assumption is not valid for structures considered in this paper according to the POD analysis.

A New Method for Robust and Secure Image Hash Improved FJLT

  • ;김형중
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2009년도 정보통신설비 학술대회
    • /
    • pp.143-146
    • /
    • 2009
  • There are some image hash methods, in the paper four image hash methods have been compared: FJLT (Fast Johnson- Lindenstrauss Transform), SVD (Singular Value Decomposition), NMF (Non-Negative Matrix Factorization), FP (Feature Point). From the compared result, FJLT method can't be used in the online. the search time is very slow because of the KNN algorithm. So FJLT method has been improved in the paper.

  • PDF

전해액 첨가제가 흑연 음극의 저온특성에 미치는 영향 (The Roles of Electrolyte Additives on Low-temperature Performances of Graphite Negative Electrode)

  • 박상진;류지헌;오승모
    • 전기화학회지
    • /
    • 제15권1호
    • /
    • pp.19-26
    • /
    • 2012
  • 표준 전해액에 2중량%의 VC(vinylene carbonate)와 FEC(fluoroethylene carbonate)를 각각 첨가한 전해액으로부터 흑연 음극 표면에 SEI(solid electrolyte interphase) 층을 형성시키고, SEI 특성에 따른 흑연 음극의 저온($-30^{\circ}C$) 충방전 특성을 조사하였다. 흑연의 충 방전 용량은 FEC를 첨가한 전해액, 표준 전해액, 그리고 VC를 첨가한 전해액의 순서로 감소하였고, 충 방시 발생하는 과전압은 반대경향을 보이며 증가하였다. 이는 첨가제의 종류에 따라 생성된 SEI 층의 저항과 전하전달저항에 차이가 있음을 설명하는데, 이를 SEI 층의 화학 조성과 두께를 비교하여 확인하였다. 표준 전해액으로부터 생성된 SEI 층은 C-O 성분을 포함하는 고분자 형태의 화합물과 리튬 염의 환원분해로 생성된 $Li_xPF_yO_z$ 등으로 구성되었다. VC를 포함한 전해액으로부터 생성된 SEI 층은 C-O 화합물 비율이 높고 조밀하여 리튬 염의 분해가 억제되어 얇은 피막이 생성됨에도 불구하고 가장 큰 저항 값을 보였다. 반면에 FEC로부터 생성된 SEI 층은 C-O 성분의 비율이 VC를 첨가한 전해액의 경우보다는 작으면서도 리튬 염의 분해가 크지 않아서, 리튬 이온의 이동이 가장 용이한 피막을 형성하고 있어 가장 낮은 피막저항 및 전하전달 저항을 나타내었다. 결론적으로 FEC를 첨가제로 사용한 경우 생성된 SEI 층의 저항이 가장 작아서 흑연 음극의 저온특성이 가장 우수하였다.