• Title/Summary/Keyword: Negative Damping

Search Result 105, Processing Time 0.025 seconds

An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System (CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구)

  • 김태한;심우건;한상구;정종식;김선철
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades

  • Arrigan, John;Huang, Chaojun;Staino, Andrea;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.177-201
    • /
    • 2014
  • With the increased size and flexibility of the tower and blades, structural vibrations are becoming a limiting factor towards the design of even larger and more powerful wind turbines. Research into the use of vibration mitigation devices in the turbine tower has been carried out but the use of dampers in the blades has yet to be investigated in detail. Mitigating vibrations will increase the design life and hence economic viability of the turbine blades and allow for continual operation with decreased downtime. The aim of this paper is to investigate the effectiveness of Semi-Active Tuned Mass Dampers (STMDs) in reducing the edgewise vibrations in the turbine blades. A frequency tracking algorithm based on the Short Time Fourier Transform (STFT) technique is used to tune the damper. A theoretical model has been developed to capture the dynamic behaviour of the blades including the coupling with the tower to accurately model the dynamics of the entire turbine structure. The resulting model consists of time dependent equations of motion and negative damping terms due to the coupling present in the system. The performances of the STMDs based vibration controller have been tested under different loading and operating conditions. Numerical analysis has shown that variation in certain parameters of the system, along with the time varying nature of the system matrices has led to the need for STMDs to allow for real-time tuning to the resonant frequencies of the system.

Effect of Several Fungicides on Control of Physiological Disease and Growth Stimulation of Rice Seedlings Grown in Seedling Boxes for Machine Transplanting (수도기계이앙상자육묘에 있어서 살균제처리가 뜸묘방제 및 생육조절작용에 미치는 영향)

  • Jong-Hoon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.3
    • /
    • pp.328-333
    • /
    • 1983
  • Due to fast industrialization and reduced agricultural population, there has been increased farm mechanization to reduce the labor requirement. In rice production, mechanical transplanting has been increasingly popular due to the heavy labor requirement in hand transplanting and development of convenient transplanters. For mechanical transplanting, rice seedlings is grown in boxes with limited soils under super dense population, thus short period of exposure to unfavorable temperature and poor water management would cause severe damage to rice seedlings such as seedling damping off and the similar physiological disorders. Several chemicals were evaluated for their effectiveness to control the disease and disorders, and other effects as plant growth stimulants. 3-hydroxy-5-methylisoxazole-a soil fungicide, Metalozyl-a fungicide which controls mildew, SF 8002-the composite of above two chemicals, and Isoprothiolane-a fungicide which controls rice blast were found to be effective controling seedling damping off and similar physiological disorders, and improvement of physiological characteristics of the seedlings such as the amount of bleeding sap, rooting ability, negative geotrophism, and regrowth after cutting. The results indicated that the chemicals will be very effective raising healthy seedlings even under unfavorable environments by the improvement of physiological activities of seedlings and preventing seedling damping off and the similar physiological disorders.

  • PDF

Seismic Influence on Subsea Pipeline Stresses

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • The safety analysis of an earthquake is carried out during the operation of a subsea pipeline and an onshore pipeline. Several cases are proposed for consideration. In the case of a buried pipeline, permanent ground deformation by the earthquake and an increase of internal pressure by the acceleration of the earthquake should be considered. In the case of a subsea pipeline, a bending moment is caused by liquefaction of the backfill material on a trenched seabed, etc., which results in a high bending moment of the buried pipeline. The bending moment causes the collapse of the subsea pipeline or a leak of crude oil or gas, which results in economic loss due to enormous environmental contamination and social economic loss owing to operation functional failure. Thus, in order to prevent economic loss and operation loss, structurally sensitive design with regard to seismic characteristics must be performed in the buried pipeline in advance, and the negative impact on the buried pipeline must be minimized by conducting a thorough analysis on the seabed and backfilling material selection. Moreover, it is proposed to consider the selection of material properties for the buried pipeline. A more economical review is also required for detailed study.

Electrostatic Suspension System of Flexible Objects using Relay Feedback Control (릴레이 제어법을 이용한 유연 판상체의 정전부상에 관한 연구)

  • Jeon Jong-Up;Kim Sun-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.104-110
    • /
    • 2006
  • A design and control of electrostatic suspension system for flexible objects is presented. A number of electrode pairs of which the number depends on the object flexibility are positioned above the object and the voltages applied to each electrode pair are controlled, independently on the others, on the basis of the gap length. To implement the system with low cost and compactness, switched-voltage control scheme that is based on the relay feedback control is utilized. Relay feedback control method deploys only a single high-voltage power supply that can deliver a DC voltage of positive and/or negative polarity and thus high voltage amplifiers that are costly and bulky are not needed any more. It is shown that despite the inherent limit cycle property of the relay feedback based control, an excellent performance in vibration suppression is attained due to the presence of a relatively large squeeze film damping originating from the electrodes and levitated object. Employing fourteen electrode pairs, a thin aluminum plate with a thickness of 0.1 mm has been suspended at a gap length of 0.75mm.

An Efficient Transmissibility-design Technique for Pneumatic Vibration Isolator (지반진동절연을 위한 공압제진대의 전달률 설계기법)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.411-423
    • /
    • 2008
  • Pneumatic vibration isolator has a wide application for ground-vibration isolation of vibration-sensitive equipments. Recent advances In precision machine tools and instruments such as nano-technology or medical devices require a better isolation performance, which can be efficiently done by precise modeling- and design- of the isolation system. This paper will discuss an efficient transmissibility design method for pneumatic vibration isolator by employing the complex stiffness model of dual-chamber pneumatic spring developed in our previous research. Three design parameters of volume ratio between the two pneumatic chambers, the geometry of capillary tube connecting the two pneumatic chambers and finally the stiffness of diaphragm necessarily employed for prevention of air leakage were found to be important factors in transmissibility design. Based on design technique that maximizes damping of dual-chamber pneumatic spring, trade-off among the resonance frequency of transmissibility, peak transmissibility and transmissibility in high frequency range was found, which was not ever stated in previous researches. Furthermore this paper will discuss about negative role of diaphragm in transmissibility design. Then the design method proposed in this paper will be illustrated through experiment at measurements.

Study of Air Clearing during Severe Transient of Nuclear Reactor Coolant System (원자로 사고 또는 과도상태시 공기방출현상에 대한 연구)

  • Bae Yoon Yeong;Kim Hwan Yeol;Song Chul-Hwa;Kim Hee Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.835-838
    • /
    • 2002
  • An experiment has been performed using a facility, which simulates the safety depressurization system (SDS) and in-containment refueling water storage tank (IRWST) of APR1400, an advanced PWR being developed in Korea, to investigate the dynamic load resulting from the blowdown of steam from a steam generator through a sparser. The influence of the key parameters, such as air mass, steam pressure, submergence, valve opening time, and pool temperature, on frequency and peak toads was investigated. The blowdown phenomenon was analyzed to find out the real cause of the initiation of bubble oscillation and discrepancy in frequencies between the experiment and calculation by conventional equation for bubble oscillation. The cause of significant damping was discussed and is presumed to be the highly tortuous flow path around bubble. The Rayleigh-Plesset equation, which is modified by introducing method of image, reasonably reproduces the bubble oscillation in a confined tank. Right after the completion of air discharge the steam discharge immediately follows and it condenses abruptly to provide low-pressure pocket. It may contribute to the negative maximum being greater than positive maximum. The subsequently discharging steam does not play as at the driving force anymore.

  • PDF

Study on Reduction Method and Characteristic of Lateral Vibration of the Tail Car in a High Speed Train (고속철도 차량의 후미 횡진동 특성 및 저감방안에 관한 연구)

  • Kim, Jae Chul;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.765-771
    • /
    • 2014
  • During the acceptance test of KTX, unexpectedly great lateral vibration in 14th~16th train at 150km/h~200km/h was appeared on a straight line in the winter season. Generally, stiffness of secondary suspension in KTX vehicle is one of the most sensitive components on air temperature. So, we examined that the secondary suspension to be mounted heating system was able to reduce the lateral vibration in the tail car of KTX. Also, we verified that lateral vibration from test results on KTX train with wheel conicity 1/20 disappeared. In this paper, we analysis effective reduction methods and the cause of the lateral vibration using model of KTX train and compare with the test results. The analysis results agree well with test ones. From mode analysis result, lateral vibration is occurred at natural frequency range 0.5~0.6Hz with a negative damping value and its natural frequency disappear gradually according to increasing of wheel concinicy.

Hybrid Rubber Mount by Using Magnetic Force (자력을 이용한 하이브리드 고무 마운트)

  • Ahn, Young Kong;Kim, Dong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.236-246
    • /
    • 2014
  • This paper presents a hybrid rubber mount with magnet to isolate effectively the vibration in vehicle, forklift, and so on. The hybrid mount does not have any controller of the magnetic force. Dynamic stiffness of the mount is reduced by only magnetic suction according to the applied magnetic field and damping coefficient increased. Performance of conventional rubber mount with using electromagnet has been investigated by MTS Tester. The governing equation of the hybrid mount was derived and verified by comparison with experimental and theoretical results. The equation can be used practically and usefully in the design of the mount and analysis of the mounting system. The hybrid mount provides excellent performance in vibration isolation and its structure is very simpler than active with controller and a semi-active mount with a functional fluid. Furthermore, production cost of the mount using permanent magnets is very lower than that of the active mount with electromagnets. Therefore, commercial potential of the mount is very high.

Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

  • Bhowmik, Subrata;Weber, Felix;Hogsberg, Jan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.673-693
    • /
    • 2013
  • This paper presents a systematic design and training procedure for the feed-forward back-propagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output, an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where the observed modeling errors for the inverse model can be related to knocking effects in the measured force due to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the pre-yield region where the inverse NN overestimates the current to track the desired viscous force.