• Title/Summary/Keyword: Negative Damping

Search Result 104, Processing Time 0.022 seconds

Modal Analysis of Resonance and Stable Domain Calculation of Active Damping in Multi-inverter Grid-connected Systems

  • Wu, Jian;Chen, Tao;Han, Wanqin;Zhao, Jiaqi;Li, Binbin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.185-194
    • /
    • 2018
  • Interaction among multiple grid-connected inverters has a negative impact on the stable operations and power quality of a power grid. The interrelated influences of inverter inductor-capacitor-inductor filters constitute a high-order power network, and consequently, excite complex resonances at various frequencies. This study first establishes a micro-grid admittance matrix, in which inverters use deadbeat control. Multiple resonances can then be evaluated via modal analysis. For the active damping method applied to deadbeat control, the sampling frequency and the stable domain of the virtual damping ratio are also presented by analyzing system stability in the discrete domain. Simulation and experimental results confirm the efficiency of modal analysis and stable domain calculation in multi-inverter grid-connected systems.

Effectiveness of non-linear fluid viscous dampers in seismically isolated buildings

  • Guler, Elif;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.191-204
    • /
    • 2019
  • Near-field earthquake records including long-period high-amplitude velocity pulses can cause large isolation system displacements leading to buckling or rupture of isolators. In such cases, providing supplemental damping in the isolation system has been proposed as a solution. However, it is known that linear viscous dampers can reduce base displacements in case of near-field earthquakes but at the potential expense of increased superstructure response in case of far-field earthquakes. But can non-linear dampers with different levels of non-linearity offer a superior seismic performance? In order to answer this question, the effectiveness of non-linear viscous dampers in reducing isolator displacements and its effects on the superstructure response are investigated. A comparison with linear viscous dampers via time history analysis is done using a base-isolated benchmark building model under historical near-field and far-field earthquake records for a wide range of different levels of non-linearity and supplemental damping. The results show that the non-linearity level and the amount of supplemental damping play important roles in reducing base displacements effectively. Although use of non-linear supplemental dampers may cause superstructure response amplification in case of far-field earthquakes, this negative effect may be avoided or even reduced by using appropriate combinations of non-linearity level and supplemental damping.

Control Strategy for Three-Phase Grid-Connected Converters under Unbalanced and Distorted Grid Voltages Using Composite Observers

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.469-478
    • /
    • 2013
  • This paper proposes a novel scheme for the current controller for the grid-side converter (GSC) of permanent-magnet synchronous generator (PMSG) wind turbines to eliminate the high-order harmonics in the grid currents under grid voltage disturbances. The voltage unbalance and harmonics in three-phase systems cause grid current distortions. In order to mitigate the input current distortions, multi-loop current controllers are applied, where the positive-sequence component is regulated by proportional-integral (PI) controllers, and the negative-sequence and high-order harmonic components are regulated by proportional-resonance (PR) controllers. For extracting the positive/negative-sequence and harmonic components of the grid voltages and currents without a phase delay or magnitude reduction, composite observers are applied, which give faster and more precise estimation results. In addition, an active damping method using PR controllers to damp the grid current component of the resonant frequency is employed to improve the operating stability of VSCs with inductor-capacitor-inductor (LCL) filters. The validity of the proposed method is verified by simulation and experimental results.

Power System Rotor Angle Stability Improvement via Coordinated Design of AVR, PSS2B, and TCSC-Based Damping Controller

  • Jannati, Jamil;Yazdaninejadi, Amin;Nazarpour, Daryush
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.341-350
    • /
    • 2016
  • The current study is dedicated to design a novel coordinated controller to effectively increase power system rotor angle stability. In doing so, the coordinated design of an AVR (automatic voltage regulator), PSS2B, and TCSC (thyristor controlled series capacitor)-based POD (power oscillation damping) controller is proposed. Although the recently employed coordination between a CPSS (conventional power system stabilizer) and a TCSC-based POD controller has been shown to improve power system damping characteristics, neglecting the negative impact of existing high-gain AVR on the damping torque by considering its parameters as given values, may reduce the effectiveness of a CPSS-POD controller. Thus, using a technologically viable stabilizer such as PSS2B rather than the CPSS in a coordinated scheme with an AVR and POD controller can constitute a well-established design with a structure that as a high potential to significantly improve the rotor angle stability. The design procedure is formulated as an optimization problem in which the ITSE (integral of time multiplied squared error) performance index as an objective function is minimized by employing an IPSO (improved particle swarm optimization) algorithm to tune adjustable parameters. The robustness of the coordinated designs is guaranteed by concurrently considering some operating conditions in the optimization process. To evaluate the performance of the proposed controllers, eigenvalue analysis and time domain simulations were performed for different operating points and perturbations simulated on 2A4M (two-area four-machine) power systems in MATLAB/Simulink. The results reveal that surpassing improvement in damping of oscillations is achieved in comparison with the CPSS-TCSC coordination.

An Investigation on the Lateral Vibration of General Rotors Considering Additional Effects (부수적인 영향 을 고려한 일반적인 회전축 의 횡진동 에 관한 연구)

  • 한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.81-90
    • /
    • 1985
  • For the prediction of the real vibration and stability behaviour of rotor-beaing systems, various additional effects were considered, which are simplified or neglected by conventional modeling of real rotors. These are specially coupled spring and damping coefficients of journal bearings, spring and damping coefficients of external supporting elements for bearings, static load exerting on gears or pulleys by power transmissions, excitation through the gear tolerance or failure, and positive or negative spring and damping characteristics of magnetic or sealing friction force. Considering these effects, a computer program for the calculation of free and forced vibration of rotating shafts supported by two or more bearings is developed, based on the transfer matrixed method. The reliability of the calculated resutls were ascertianed by comparing with the measured data on high speed rotors supported by two journal bearings.

Maneuvering and Active Vibration Control of Slewing Flexible Beam using Input Shaper (입력성형기를 이용한 회전 유연보의 조종 및 진동제어)

  • Kwak, Moon-K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.701-706
    • /
    • 2012
  • This research is concerned with the derivation of equations of motion for a slewing beam and the application of input shaper to the bang-bang control to achieve vibration suppression. When a uniform beam with a tip mass rotates about the axis perpendicular to the undeformed beam's longitudinal axis, it experiences inertial loading. Hence, the beam vibrates. In this paper, we used the input shaper for the maneuvering control to suppress vibrations. The maneuvering control which can achieve a minimum-time control is a bang-bang control. The input-shaped bang-bang maneuvering is used to suppress vibrations both theoretically and experimentally. The slewing beam experiment is not an easy subject because of the inherent damping existing inside the rotor. We propose the use of a negative damping to eliminate the rotor damping. Numerical and experimental results show that the input-shaper can be effectively used for the vibration suppression of a slewing beam.

  • PDF

Maneuvering and Active Vibration Control of Slewing Flexible Beam Using Input Shaper (입력성형기를 이용한 회전 유연보의 조종 및 진동제어)

  • Kwak, Moon-K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.542-549
    • /
    • 2012
  • This research is concerned with the derivation of equations of motion for a slewing beam and the application of input shaper to the bang-bang control to achieve vibration suppression. When a uniform beam with a tip mass rotates about the axis perpendicular to the undeformed beam's longitudinal axis, it experiences inertial loading. Hence, the beam vibrates. In this paper, we used the input shaper for the maneuvering control to suppress vibrations. The maneuvering control which can achieve a minimum-time control is a bang-bang control. The input-shaped bang-bang maneuvering is used to suppress vibrations both theoretically and experimentally. The slewing beam experiment is not an easy subject because of the inherent damping existing inside the rotor. We propose the use of a negative damping to eliminate the rotor damping. Numerical and experimental results show that the input-shaper can be effectively used for the vibration suppression of a slewing beam.

Development of the educational management model for dynamic instability analysis in nanocomposite sandwich beam

  • Wenxi Tang;Chunhui Zhou;Maryam Shokravi;X. Kelaxich
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • This paper presents the development of an educational management model for analyzing the dynamic instability of nanocomposite sandwich beams. The model aims to provide a comprehensive framework for understanding the behavior of sandwich micro beams with foam cores, featuring top and bottom layers made of smart and porous functionally graded materials (FGM) nanocomposites. The bottom layer is influenced by an external electric field, and the entire beam is supported by a visco-Pasternak foundation, accounting for spring, shear, and damping constants. Using the Kelvin-Voigt theory to model structural damping and incorporating size effects based on strain gradient theory, the model employs the parabolic shear deformation beam theory (PSDBT) to derive motion equations through Hamilton's principle. The differential quadrature method (DQM) is applied to solve these equations, accurately identifying the improvement in student understanding (ISU) of the beams. The impact of various parameters, including FGM properties, external voltage, geometric constants, and structural damping, on the DIR is thoroughly examined. The educational model is validated by comparing its outcomes with existing studies, highlighting the increase in ISU with the application of negative external voltage to the smart layer. This model serves as a valuable educational tool for engineering students and researchers studying the dynamic stability of advanced nanocomposite structures.

An Application of Coordinate Transformation Method on Lubricating Characteristics of Negative Pressure Slider

  • Hwang, Pyung;Park, Sang-Shin;Kim, Eun-Hyo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.285-286
    • /
    • 2002
  • The lubricating characteristics of negative pressure slider were performed by using divergence formulation method with the coordinate transformation method. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The pressure profile of the slider is calculated. These results are compared to that from direct numerical method. The steady-state, including minimum film thickness, pitching and rolling angle are calculated by multi-dimensional Newton-Rapson method. The stiffness and damping characteristics are also calculated.

  • PDF

Investigation of Friction Noise with Respect to Friction Curve by Using FEM and Its Validation (마찰 곡선을 고려한 Pin-on-disk 마찰소음 해석 및 검증)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • This study provides the numerical finite-element method(FEM) estimating the friction noise induced by the negative slope in the friction-velocity curve. The friction noise due to the friction-velocity curve is experimentally investigated through the pin-on-disk setup. The measured squeal frequency is estimated by FEM. The friction curve is measured by the friction test, then it is applied to the complex eigenvalue analysis. The results shows that the experimental squeal frequency can be determined by the FEM analysis. Also, it is emphasized that the negative friction-velocity slope is essential in generating friction noise in the pin-on-disc system.