• Title/Summary/Keyword: Neel model

Search Result 10, Processing Time 0.025 seconds

Magnetoresistance Properties in Synthetic CoFe/Ru/CoFe/FeMn Spin Valves with Different Pinned Layer Thicknesses (합성형 반강자성체인 CoFe/Ru/CoFe/FeMn에서 고정층의 두께 차이에 따른 스핀 밸브 구호의 자기저항 특성)

  • 김광윤
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.211-216
    • /
    • 2001
  • Top synthetic spin valves wi th structure Ta/NiFe/CoFe/Cu/CoFe(Pl)/Ru/CoFe(P2)/FeMn/Ta on Si (100) substrate with SiO$_2$ of 1500 were prepared by dc magnetron sputtering system. We have changed only the thickness of the free layer and the thickness difference (Pl-P2) in the two ferromagnetic layers separated by Ru, and investigated the effect of magnetic film thickness on the GMR properties and the interlayer coupling field in a spin valve with a synthetic antiferromagnet. As thickness difference of pinned layer was decreased from +25 to -25 , MR ratio was decreased gradually. However, there was a dip zone indicating a big change of MR ratio around Pl = P2, which can be due to the large canting of pinned layers. The modified Neel model was suggested for the top synthetic spin valve to explain the interlayer coupling field according to the thickness change of ferromagnetic layers. The interlayer coupling field was decreased due to the magnetostatic coupling (orange peel coupling) as suggested by model. However, the interlayer coupling field was not explained at the dip zone by the modified Neel model. The deviation of modified Neel model at the dip zone could be due to the largely canting of the pinned layers as well, which depends on different thickness in synthetic antiferromagnetic structure.

  • PDF

Simulation of the Effect of Soft Underlayer Domain Wall Structure on Output Signal in Perpendicular Magnetic Recording

  • Kim, Eun-Sik;Lim, Chee-Kheng;Kim, Yong-Su;Lee, Ju
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.83-86
    • /
    • 2006
  • Controlling magnetic domains in soft underlayer (SUL) of perpendicular magnetic recording (PMR) is an important issue for the application of PMR in HDD. We studied the magnetic domain structures in SUL using the finite element based micromagnetic simulation (FEMM) for the SUL models with different thicknesses. The purpose is to simulate the magnetic domain wall noise when the SUL thickness and saturation magnetization are changed. The simulation results show that a 15 nm SUL forms simpler Neel wall domain wall pattern and 40 nm SUL forms complex Bloch wall. To visualize the effect of these domain walls stray field at a read sensor position, the magnetic stray field of the domain walls at air bearing surface (ABS) which is 50 nm above the SUL was simulated and the results imply that Bloch walls have stronger stray field with more complicated field patterns than Neel walls and this becomes a significant noise source. Therefore, the thickness of the SUL should be controlled to avoid the formation of Bloch walls.

Interlayer Coupling Field in Spin Valves with CoEe/Ru/CoFe/FeMn Synthetic Antiferromagnet (Synthetic antiferromagnet CoFe/Ru/CoFe/FeMn을 이용한 스핀 밸브 구조의 interlayer coupling field)

  • Kim, K.Y.;Shin, K.H.;Kim, H.J.;Jang, S.H.;Kang, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.203-209
    • /
    • 2000
  • Top synthetic spin valves with structure Ta/NiFe/CoFe/Cu/CoFe(P 1)/Ru/CoFe(P2)/FeMn/Ta on Si (100) substrate with natural oxide were prepared by dc magnetron sputtering system. We have changed only the thickness in free layers and the thickness difference (Pl-P2) in two ferromagnetic layers separated by Ru, and investigated the effect of magnetic film thickness on interlayer coupling field in spin valve with synthetic antiferromagnet. According to the decrease of free layer thickness, interlayer coupling field was increased due to the magnetostatic coupling(orange peel coupling). In case of t$\_$P1/>t$\^$P2/, interlayer coupling field agreed well with the modified Neel model suggested in conventional spin valve structures by Kools et al. However, in case of t$\_$P1/>t$\^$P2/, it was found that the interlayer coupling field was not explained by the Modified Neel Model and was confirmed the necessity of further remodeling. The dependence of Cu thickness on the interlayer coupling field was investigated and 10 Oe of interlayer coupling field was obtained when the Cu thickness is 32 $\AA$.

  • PDF

The Study of Antiferromagnetic Spin-lattice Coupling of FeCr2Se4 (FeCr2Se4의 반강자성 스핀-격자 상호작용 연구)

  • Kang, Ju-Hong;Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung;Lee, H.G.;Park, Min-Seok;Lee, Sung-Ik
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.86-89
    • /
    • 2007
  • [ $FeCr_2Se_4$ ] prepared under the high pressure (3 GPa) has been studied with x-ray, neutron diffraction techniques, superconducting quantum interference device (SQUID) magnetometer, resistance, and Mossbauer spectroscopy. The temperature dependence of resistance is explained by Mott-VRH and small polaron model for the regions I (T<20 K) and II (T>42 K), respectively. Neutron diffraction results show an antiferromagnetic spin-lattice coupling near the Neel temperature. So finally the distance of atom is enlarged in region (110$FeCr_2Se_4$ shows convex type of temperature dependence.

A Study on Magnetic State of Nonstoichiometric Substituted Ferrite Fe$_{}1.429$(Al$_{4-x}$ Ga$_{x}$)$_{0.286}$ Si$_{0.143}$ /O$_4$ Systme. (비화학량론적 치환형 페라이트 Fe$_{}1.429$(Al$_{4-x}$ Ga$_{x}$)$_{0.286}$ Si$_{0.143}$ /O$_4$계의 자기적 상태 연구)

  • Choi, Seung-Han
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.808-815
    • /
    • 1995
  • The magnetic states of nonstoichiometric substituted ferrite Fe$_{}1.429$(Al$_{4-x}$ Ga$_{x}$)$_{0.286}$ Si$_{0.143}$ /O$_4$ system have been investigated using Mossbauer spectroscopy and SQUID. The Mossbauer spectra at room temperature show well-defined two Zeeman patterns for x=0.2, superpositions of two Zeeman patterns and a doublet for x=0.4. The doublet peak seems to be originated from the superparamagnetic clusters. The system shows significant departures from the Neel's collinear model and seems to be the diluted ferrites. The Mossbauer spectra below R.T show various and complicated patterns, which can be explained by freezing of the superparamagnetic clusters. On cooling, magnetic states of the system may be various and multicritical, Resulting from SQUID measurements, there was an unexpected dip in magnetization curves below 50K. It was interpreted as an effect of spin canting including spin freezing or collective spin behavior.

  • PDF

Magnetic Properties and Cation Distribution of Phosphorous-Doped $Co-{\gamma}-{Fe_2} {O_3}$ Particles

  • Na, J.G.;Han, D.H.
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.51-54
    • /
    • 1996
  • The effects of additional P-doping on the magnetic properties, thermal stability and cation distribution of Co-doped ${\gamma}-{Fe_2} {O_3}$have been investigated by means of magnetic annealing and measurements with vibration sample magnetometer and torque magnetometer. It is found that the P-doping promotes the coercivity and its magnetic-thermal stability, which may be attributed to increase of the cubic magneto-crystalline anisotropy constant, $K_1$ and the activation energy, E, for cation rearrangement, respectively. The cation distribution of P and Co-substituted iron oxide was calculated from the variation of the saturation magnetization with P-doping on the basis of the Neel model. It was found that the most of P ions in the iron oxides occupied the B-site of spinel lattice.

  • PDF

Positive Exchange Bias in Thin Film Multilayers Produced with Nano-oxide Layer

  • Jeon, Byeong-Seon;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.304-305
    • /
    • 2013
  • We report a positive exchange bias (HE) in thinmultilayered filmscontaining nano-oxide layer. The positive HE, obtained for our system results from an antiferromagnetic coupling between the ferromagnetic (FM) CoFe and the antiferromagnetic (AFM) CoO layers, which spontaneously form on top of the nano-oxide layer (NOL). The shift in the hysteresis loop along the direction of thecooling field and the change in the sign of exchange bias are evidence of antiferromagnetic interfacial exchange coupling between the CoO and CoFe layers. Our calculation indicates that uncompensated oxygen moments in the NOL results in antiferromagnetic interfacial exchange coupling between the CoO and CoFe layers. One of the interesting features observed with our system is that it displays the positive HE even above the bulk Neel temperature (TN) of CoO. Although the positive HEsystem has a different AFM/FM interfacial spin structure compare to that of the negative HE one, the results of the angular dependence measurements show that the magnetization reversal mechanism can be considered within the framework of the coherent rotation model.

  • PDF

Crystallographic and Magnetic Properties of Li0.5Fe2.5-χRhχO4 by Using Applied Field Mossbauer Spectrometer (외부자기장 뫼스바우어 분광기를 이용한 Li0.5Fe2.5-χRhχO4의 자기적 성질과 결정학적 구조에 관한 연구)

  • Kang, Kun-Uk;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.219-223
    • /
    • 2004
  • L $i_{0.5}$F $e_{2.5-{\chi}}$R $h_{\chi}$ $O_4$ ($\chi$ = 0.25, 0.50, 0.75, 1.00) has been prepared by solid state reaction. Crystallographic and magnetic properties were investigated by Mossbauer spectroscopy, SQUID magnetometry, and x-ray diffraction. The crystal structure is found to be a cubic spinel structure with space group Fd3m for all the samples. The lattice constant $a_{0}$ increases from 8.3365 $\AA$ to 8.3932 $\AA$ with increasing Rh concentration $\chi$. The migration of Li ion has been confirmed by x-ray patterns and the results of applied field Mossbauer analysis. The temperature dependence of the absorption area of each site was analyzed with the Debye model for the recoil-free fraction. The Debye temperature for the octahedral sites is almost as large as for the tetrahedral sites, thereby suggesting similar inter-atomic binding forces for the octahedral and the tetrahedral sites. The saturated magnetic moment and the Mossbauer spectra taken at 4.2 K under the applied field (6 T) show that the spin structure of L $i_{0.5}$F $e_{2.5-{\chi}}$R $h_{\chi}$ $O_4$ is compatible with the collinear Neel Model.

Structural and Magnetic Properties of the Substituted YIG System (치환된 YIG계의 구조적 및 자기적 특성)

  • Choi, Seung-Han;Lee, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.48-52
    • /
    • 2003
  • The substituted yttrium iron garnet systems $Y_{ 3-x}$/Gd$_{x}$X$0.2_{0.2}$ $Fe_{4.8}$ $O _{12}$ (x = 0.2, 0.4, 0.6) have been investigated by means of X-ray diffraction, Mossbauer spectroscopy and SQUID. The X-ray diffraction patterns at room temperature confirm the samples to have a single phase of the garnet structure over the whole composition range. The lattice constants of all the samples linearly change with increasing x due to the size of substituted ions in the dodecahedral sites. $Y_{3-x}$ $Gd_{x}$ X$Fe_{4.8}$ $In_{0.2}$ $O_{12}$ system which $Y_{3-x}$ ions are substituted with Gd$^{ 3+}$ ions, the Mossbauer spectrum consists of three Zeeman sextets at room temperature, one due to the $Fe^{3+}$ ions on the octahedral(a-) sites and the others due to the $Fe^{3+}$ ions on the tetrahedral(d-, d'-) sites, respectively. From the hysteresis loop measured by means of SQUID over the whole composition range, the saturation magnetization $M_{s}$ and magnetic moments $\mu_{ B}$ per unit cell have been obtained. The increment of Gd-ion content causes $M_{s}$ and $\mu_{B}$ decrease while the increment of In-ion content does not.

The competition between superconductivity and antiferromagnetism in Y$_{1-x}Tb_xNi_2B_2C$ single crystals

  • Kim, H.B.;Doh, Hyeon-Jin;Cho, B.K.;Lee, Sung-Ik
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.206-209
    • /
    • 1999
  • Magnetic and superconducting properties in a series of intermetallic compounds Y$_{1-x}Tb_xNi_2B_2C$ were investigated by measuring the temperature dependent magnetization, M (T), and resitivity, ${\rho}$ (T). As Tb concentration, x, is increased, the superconducting transition temperature, T$_c$, decreases and eventually disappears in the vicinity of x = 0.5 while Neel temperature, T$_N$, appears abruptly near x = 0.4 and increases linearly. Of particular interest is the collision of superconductivity and antiferromagnetism around x = 0.4. The linear decrease of T$_c$ for dilute Tb concentration seems to follow the Abrikosov-Gor'kov behavior, while the decay of T$_c$ below T$_c$ is expected to originate from the effective magnetic field on the conduction electrons. The Ginzburg-Landau theory was phenomenologically constructed to explain this competition of superconducting order parameter and antiferromagnetic order parameter with the multi-band model.

  • PDF