Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.1.048

Structural and Magnetic Properties of the Substituted YIG System  

Choi, Seung-Han (Faculty of Natural Science, Kyungsan University)
Lee, Young-Bae (Faculty of General studies, Donghae University)
Publication Information
Korean Journal of Materials Research / v.13, no.1, 2003 , pp. 48-52 More about this Journal
Abstract
The substituted yttrium iron garnet systems $Y_{ 3-x}$/Gd$_{x}$X$0.2_{0.2}$ $Fe_{4.8}$ $O _{12}$ (x = 0.2, 0.4, 0.6) have been investigated by means of X-ray diffraction, Mossbauer spectroscopy and SQUID. The X-ray diffraction patterns at room temperature confirm the samples to have a single phase of the garnet structure over the whole composition range. The lattice constants of all the samples linearly change with increasing x due to the size of substituted ions in the dodecahedral sites. $Y_{3-x}$ $Gd_{x}$ X$Fe_{4.8}$ $In_{0.2}$ $O_{12}$ system which $Y_{3-x}$ ions are substituted with Gd$^{ 3+}$ ions, the Mossbauer spectrum consists of three Zeeman sextets at room temperature, one due to the $Fe^{3+}$ ions on the octahedral(a-) sites and the others due to the $Fe^{3+}$ ions on the tetrahedral(d-, d'-) sites, respectively. From the hysteresis loop measured by means of SQUID over the whole composition range, the saturation magnetization $M_{s}$ and magnetic moments $\mu_{ B}$ per unit cell have been obtained. The increment of Gd-ion content causes $M_{s}$ and $\mu_{B}$ decrease while the increment of In-ion content does not.
Keywords
YIG; Ferrite; Mossbauer; SQUID; Neel model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Bauminger, S. G. Cohen, A. Marinov and S. Ofer, Phys. Rev. 122, 743 (1961)   DOI
2 J. M. D. Coey, R. D. Orewitt and C. T. Prewitt, Acta. Cryst. B25 (1969)
3 J. K. Srivastava, K. Le Dang and P. Veillet, J. Phys. C : Solid State Phys. 19, 599 (1986)   DOI   ScienceOn
4 P. A. Dickof, P. J. Schurer and A. H. Morrish, Phys. Rev. B22, 115 (1980)   DOI
5 G. Dege, J. Suwalski, E. Wieserand and R. Kabish, Phys. Status Solidi (a) 65, 669 (1987)   DOI   ScienceOn
6 I. S. Jacob, J. Phys. Chem. Solids, 15, 54 (1964)   DOI   ScienceOn
7 J. Chappert and R. B. Frankel, Phs. Rev. Lett. 19, 570 (1967)   DOI
8 A. Hauet, J. Teillet, B. Hannoyer and M. Lenglet, Phys. Status Solidi (a) 103, 257 (1987)   DOI
9 G. O. White, C. A. Edmonson, R. B. Goldfarb and C. E. Patton, J. Appl. Phys. 50, 2381 (1979)   DOI   ScienceOn
10 C. E. Patton and Y. H. Liu, J. Phys. C : Solid State Phys. 16, 5995 (1983)   DOI   ScienceOn
11 S. Geller, Z. krist. 125, 1 (1967)
12 E. De Grave, A. Gavaert, D. Chamvaere and G. Robbrecht, Physica B96. 103 (1979)   DOI   ScienceOn
13 A. H. Morrish and P. E. Clark, Phys. Rev. B11, 278 (1975)   DOI
14 A. H. Morrish and P. J. Schurer, Physica B 86-8, 921 (1977)   DOI   ScienceOn
15 A. F. Wells, Structural Inorganic Chemistry, 5th Ed., Clarendon Press, Oxford (1984)
16 J. L. Dormann and M. Noges, J. Phys. C : Condense. Matter, 2, 1223 (1990)   DOI   ScienceOn
17 F. Bertaut and F. Forrat, Compt. Rend. 242, 382 (1956)
18 S. Geller and M. A. Gilleo, Act Cryst. 10, 239 (1957)   DOI
19 D. C. Leo D. A. Lepore and J. W. Nielsen, J. Appl. Phys. 37, 1083 (1966)   DOI
20 H. M. Cohen and R. A. Chegwidden, J. Appl. Phys. 37, 1081 (1966)   DOI
21 S. Geller and M. A. Gilleo, Phys. Rev. 110, 73 (1958)   DOI